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Abstract

The standard model of particle physics includes three flavors of massless neutrinos.
If neutrinos in fact have mass and non-zero mixing angles, one flavor may oscillate
into another. A rich panoply of experiments have searched for this phenomenon using
different types of neutrinos, from both man-made and extraterrestrial sources, over a
wide range of energies, and employing a variety of detection techniques. Some recent
experiments have claimed positive results in the search for neutrino oscillations.

The NOMAD detector examined the neutrino beam at the CERN SPS for four years,
from 1995 to 1998. These data are analyzed in a search for �� � �� oscillations in the
� � � decay channel. The analysis employs a multidimensional kinematic likelihood
function to separate signal events from backgrounds.

The analysis finds no evidence of neutrino oscillations, and sets upper limits on the
coupled parameters sin� �� and �m� of sin� �� � �	
� � ��� for large �m�, and
�m� � �	
� eV�/c� at sin� �� � �.
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Cosmic Gall
Neutrinos, they are very small
They have no charge and have no mass
And do not interact at all.
The earth is just a silly ball
To them, through which they simply pass,
Like dustmaids down a drafty hall
Or photons through a sheet of glass.
They snub the most exquisite gas,
Ignore the most substantial wall,
Cold-shoulder steel and sounding brass,
Insult the stallion in his stall,
And, scorning barriers of class,
Infiltrate you and me! Like tall
And painless guillotines, they fall
Down through our heads into the grass.
At night, they enter at Nepal
And pierce the lover and his lass
From underneath the bed—you call
It wonderful; I call it crass.

—John Updike
from “Telephone Poles and Other Poems,”
New York: A. Knopf, 1963.
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Introduction

This thesis presents a search for �� � �� neutrino oscillations in the accelerator-
based NOMAD experiment. If confirmed, neutrino oscillation would represent the
first real departure from Standard Model physics. Although there have been numerous
hints, including strong support from recent atmospheric neutrino experiments, no direct
evidence has yet been found. The NOMAD experiment is capable of detecting the �
lepton that results from �� charged current interactions, and is therefore able to make
such a direct confirmation of �� � �� oscillations.

Apart from actually detecting them, studying neutrino oscillations in NOMAD is
important for a number of reasons. First, with its high statistics, NOMAD is sensi-
tive to a large region of the (sin� ��,�m�) plane, especially at low sin� ��. Results
from NOMAD explore this region and serve as cross checks for other experiments,
such as CHORUS. Finally, the analysis techniques developed by the NOMAD collab-
orators and used in this thesis can serve as a template for similar analyses in future
long-baseline accelerator neutrino experiments.

Studying �� � �� oscillations in the � � � decay channel in NOMAD is a com-
pelling challenge. The neutrino beam used by the experiment is composed mostly of
�� and contains an insignificant amount of ��, and is therefore an ideal environment in
which to search for the appearance of ��. The decay chain �� � is compelling because
of its large branching fraction (25%), larger than any other single � decay mode. It is a
challenge because of the �’s complicated cascade of decays which makes the identifi-
cation difficult, and the large hadronic background to the signal. The analysis presented
in this thesis aims to overcome these difficulties and make a meaningful measurement.

The thesis is organized into four chapters. The first begins with a history of neu-
trinos, discusses some of the phenomenology behind neutrino mass and oscillations,
and reviews the relevant experimental searches for oscillation. Chapter 2 describes the
apparatus and data used for this analysis. The apparatus consists of the neutrino beam-
line at CERN and the NOMAD detector itself. The data collection and processing is
then briefly explained. The third chapter describes the analysis. The general analytic
methods are described, the backgrounds are illustrated, and the particle identification
is detailed. The chapter concludes with a detailed list of all cuts used and their effects
on the signal and backgrounds. The final chapter presents the conclusions from the
analysis outlined in Ch. 3.

1
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Chapter 1

Background

In this chapter, the groundwork is laid for the rest of the thesis. First, a brief history
of major neutrino discoveries is given. Then the role of neutrino mass is discussed,
followed by the phenomenology of neutrino oscillations. Finally, the relevant previous
experimental results are reviewed.

1.1 History of Neutrinos

Neutrinos have played an integral part in the development of physics in the 20th cen-
tury. Non-participatory in the electromagnetic or strong nuclear forces, neutrinos are
ideal probes of the weak nuclear force. Produced copiously in the Sun and in other as-
tronomical events, they have begun to play a large role in astrophysics and cosmology.
They have been intensely studied to understand the inner workings of our sun, and have
been proposed as at least a component of the dark matter which makes up most of the
mass of the universe.

Neutrinos were originally proposed as a “desperate remedy” to the problem of nu-
clear �-decay. According to nuclear theory of the 1920’s, �-decay was the two-body
decay of a nucleus wherein the atomic mass remained the same but the atomic number
changed by one unit:

�A�Z�� �A�Z� �� � e�	 (1.1)

Momentum conservation equated the momentum of the electron with that of the re-
coiling nucleus. Given the difference in masses between the incident and final nuclei,
Q � M�A�Z� �M�A�Z � ��, the predicted energy spectrum of the electron which
should be a spike at nearly the value Q. Instead, the observed spectrum was a con-
tinuum peaking at � Q�2 with an endpoint near Q. While Niels Bohr concluded that
energy conservation must therefore be broken [1], Wolfgang Pauli noted that an un-
observed (electrically neutral) particle emitted along with the electron could induce

3



4 CHAPTER 1: BACKGROUND

such a spectrum. In a now-famous letter1 dated December 1930 Pauli proposed a new
elementary particle, which he called the neutron.

Pauli promoted his idea at several physics meetings after that, speculating about the
properties of this neutron. In his original letter he had stated that the neutron should
have spin-1

2 , mass on the order of the electron mass, a small magnetic moment, and
about ten times the penetrating capacity of a gamma ray. In June 1931 at an Ameri-
can Physical Society meeting in Pasadena he claimed that his neutrons “should have
an angular momentum 1

2h�2� and also a magnetic moment, but no charge. They are
kept in the nucleus by magnetic forces and are emitted together with beta-rays in ra-
dioactive disintegration.” [3] In October of that year, at a meeting in Rome organized by
Enrico Fermi, he discussed the new particle with both Bohr, who vehemently opposed
it, and Fermi, who favored the idea. Although his neutron concept was widely known
among physicists by then, Pauli first presented it for publication at the Seventh Solvay
Conference [4] in October 1933. It is unclear whether Pauli still held the belief that his
neutrons were nuclear constituents at that point, but in the published account he claimed
no longer to favor the idea that they had a magnetic moment. That massless particles
could be created in conjunction with electron emission in �-decay was proposed [5] in
the same year by Francis Perrin, who had also attended the Solvay Conference.

It was Fermi who gave the neutrino its name. In 1932, James Chadwick had dis-
covered [6] what we now know as the neutron in beryllium decays, for which he was
awarded the Nobel prize in 1935. This clearly was not Pauli’s particle, though, since
its mass was close to the proton’s and not the electron’s. In order to distinguish the
two neutrons, then, Carlson and Oppenheimer referred [7] to the Pauli particle as the
magnetic neutron, because of the assumption that it would have a non-zero magnetic
moment. Perhaps because he was by then trying to decouple the existence of his par-
ticle from the assertion of its magnetic moment, Pauli used the term “neutrino”2 in his
presentation at the Solvay Conference, a name he claimed was suggested by the Italian
Fermi.

The next year Fermi published [8] his theory of �-decay, in which not only the ex-
istence, but also the properties of the neutrino are assumed. His Hamiltonian described
�-decay as a product of two vector currents, one relating the nucleons and the other
connecting the leptons:

H �
GFp

2

�
�y
pj��n

� �
�y
ej
���

�
� (1.2)

where � stands for a fermion field (spinor), j is a matrix which relates spinors to each
other, and GF is the interaction coupling strength. Called by Victor Weisskopf [9] “the
first example of modern field theory,” Fermi’s theory of the weak interaction was im-

1An English translation of Pauli’s letter may be found in Ref. [2].
2Italian for “little neutral one.”
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mediately accepted because of its excellent description of the electron energy spectrum
as measured by experiment. Based on the success of the theory, Bohr was even com-
pelled to retract [10] his belief that energy was not conserved in �-decays. Thus, the
neutrino’s existence was established long before it was ever seen.

Interestingly, the first direct evidence [11] for the existence of the neutrino came
in the same year that parity violation in weak interactions was found, demonstrating
that the current could not have the vector form given by Fermi (Eq. 1.2). In 1956
Clyde Cowan and Fred Reines, working at the Savannah River nuclear reactor in South
Carolina, were able to observe the so-called “inverse �-decay” reaction:

�	Cl � �� �	Ar � e�	 (1.3)

Bruno Pontecorvo had first suggested [12] the chlorine reaction above, and Luis Alvarez
further developed [13] this suggestion into a detector design. Reines’ initial plan had
been to try to observe neutrinos from a nuclear explosion, and he had even approached
Fermi about such a possibility at Los Alamos; but he eventually decided that a reactor
would provide a more stable source. Initial work [14] at the Hanford, Washington reac-
tor was published in 1953, but that showed only a 2� signal above a large background
from cosmic rays. The Savannah River facility provided them with far better shield-
ing and reactor neutrino flux, the lab being placed 12 meters underground and only 11
meters from the reactor center. The detector Cowan and Reines used consisted of two
modestly-sized (�200 liter) tanks of a cadmium chloride solution in water. Using these
they were able to detect the �-ray emitted when a positron, liberated as per Eq. 1.3,
annihilated with an electron, followed closely by the photon emitted when a cadmium
nucleus de-excited after absorbing the neutron. Reines was awarded the Nobel prize
for this work in 1995; Cowen had already died.

By the late 1950’s parity non-conservation in weak interactions had been observed
[15] and the two-component theory [16] of neutrinos was proposed to explain it. In
the two-component theory neutrinos are massless by definition, and their helicities are
fixed, although the sign of the helicity was unknown. It remained to Goldhaber [17] in
1958 to determine experimentally that neutrinos are in fact left-handed, a fact that was
incorporated into theV�A theory of Feynman and Gell-Mann [18] and Sudarshan and
Marshak [19].

The discovery that the �� and the �e were separate particles came in the 1960’s.
If the neutrinos associated with �-decay and the neutrinos associated with pion decay
were the same, then the decay � � e � � should occur [20] at a rate of about ���

times the rate for � � e � � � �, yet it had been measured [21] to be less than ��
.
Around 1960, Pontecorvo [22] and Melvin Schwartz [23] independently proposed the
idea of making beams of neutrinos from the decays-in-flight of pions and kaons pro-
duced at particle accelerators. In 1962, a team from Columbia University, which in-
cluded Schwartz, constructed a neutrino beam and found that upon reinteraction these
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neutrinos always produced muons, not a combination of muons and electrons. This
result [24] confirmed that the two types of neutrinos were separate, and the �� was
established. In 1988, Jack Steinberger, Leon Lederman, and Schwartz were awarded
the Nobel Prize for this work.

The discovery of a third lepton family [25] in 1975 implied the existence of the tau
neutrino (��), although it has yet to be directly observed. By measuring the width of
the Z-boson mass distribution in 1989, collaborations at SLAC [26] and CERN [27]
were able to determine that there can be no other weakly interacting light neutrinos.
The current best value [28] of the number of light neutrino species is �	���� 	��.

The production of neutrino beams from high energy particle accelerators has proved
to be an invaluable tool in the study of neutrinos. In 1973, using a �� beam at CERN,
the Gargamelle collaboration first discovered [29] evidence for the neutral weak cur-
rent, which was an important confirmation of electroweak theory. Furthermore, by
measuring the ratio of neutral current (NC) to charged current (CC) interactions for
neutrinos and anti-neutrinos, they were able to measure the weak mixing angle �W.
Later neutrino experiments at CERN, Brookhaven, and Fermilab provided better mea-
surements of sin� �W, which remained the most precise values until LEP began running
in the late 1980’s. A neutrino beam experiment at Brookhaven in 1975 was the first to
see [30] charmed baryons. Neutrino experiments at accelerators have tested the lepton
number conservation laws, looked for flavor changing neutral currents (FCNC), and
measured the nuclear structure functions [31].

Large underground particle detectors, some of which were initially built to look for
proton decay, have proved to be ideal “neutrino telescopes” as well. Through widely
varying detection techniques (water Cherenkov, radiochemical, iron calorimetric), neu-
trinos coming from the Sun, from distant astrophysical events (supernovae, e.g.), and
from cosmic ray showers in our atmosphere can be detected. In 1987 neutrinos from a
supernova explosion (SN 1987A) were seen for the first time in two water Cherenkov
detectors: Kamiokande [32] and IMB [33].

So, what began in the 1930’s as a desperate remedy has become a familiar set of
three particles (�e, ��, ��) in the Standard Model today. Beams of these particles
produced at accelerators have been essential probes of the weak interaction, and ex-
traterrestrial neutrinos can shed light on astrophysical processes.

1.2 Neutrino Mass

In the Standard Model of particle physics, the neutrino properties are clearly prescribed:
they are particles of intrinsic spin 1

2h̄ (fermions), zero electric charge, and no mass.
This last property is motivated entirely by experimental considerations, the mass terms
which would ordinarily arise in the Standard Model Lagrangian being set to zero. There
is no good theoretical justification for the masslessness of the neutrinos. The only other
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massless particle, the photon, must be so in order to satisfy gauge invariance, but there
is no such principle that requires massless neutrinos. This then begs the question “If
neutrinos are not required to be massless, why are they?” or alternatively, “Do neutrinos
in fact have mass?”

From the beginning, Fermi recognized that the neutrino must at least be very light
or the endpoint of the �-decay electron spectrum would be deformed; but he did not as-
sume it would be exactly massless. By the 1950’s it was known [34] that the neutrino’s
mass was much smaller than the electron’s, and the authors of the two-component neu-
trino theory assumed it to be zero. Conversely, in theV�A theory of weak interactions,
neutrinos were treated like all other massive fermions, allowing the possibility of mass
but not requiring it.

1.2.1 Dirac and Majorana masses

The charged quarks and leptons are Dirac particles; that is, they are described by four-
component complex spinors which obey the Dirac equation. One might assume that if
neutrinos were massive they would be similar; however, since neutrinos have no electric
charge, there is another possibility. Neutrinos could be described by a two-component
spinor, in a way first suggested [37] by Ettore Majorana in 1937.

To understand Dirac particles, it is instructive to consider a generic charged fermion
� with mass m� � . The four components of its Dirac spinor represent the left and
right helicity states of the particle and antiparticle:

�D �

�
���
�L
�R
�L
�R

�
��� 	 (1.4)

Suppose one had an � moving with velocity v in the direction �z in some inertial
reference frame F�, with its spin aligned in the opposite direction, i.e. along ��z. To
an observer in this frame, this appears to be the state �L. Now, because the particle �
has mass, it is possible to boost into another reference frame F� moving along ��z with
speed greater than v. To an observer in frame F�, the particle appears to be moving in
the direction ��z, and its spin is aligned with its velocity. This represents a right-handed
state, but we have two right-handed states to choose from: �R and �R. In the case of
a charged particle there is no ambiguity, since charge is Lorentz-invariant. The states
before and after the Lorentz boost must have the same charge; so, if we had �L in frame
F�, we must have �R in frame F�.

If neutrinos have mass and are Dirac particles, then they are described by a four-
component spinor as well, the components being �L, �R, �L, and �R. Then, in the
above example, the Lorentz-boosted state is �R, in direct analogy to the charged lepton
case. One important point is that if neutrinos are Dirac particles, a Lorentz boost con-
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serves lepton number. This is in agreement with all experimental tests of lepton number
conservation to date.

Majorana particles are massive particles with no Lorentz-invariant quantity (like
electric charge) to distinguish particle from anti-particle. They only have two degrees
of freedom, i.e. they are described by two-component spinors, which for a neutrino
might have states �L and �R. So, in the Lorentz boost example above, the original �L
would be boosted into a �R, its own anti-particle. It is therefore evident that if neutrinos
are Majorana particles, lepton number must not be conserved.

The difference between Dirac and Majorana particles is similar to the difference
between the charged and neutral pions. The charged pions are represented by a complex
scalar field (two degrees of freedom), and the �� by a real scalar field (one d.o.f.). Since
there is no quantum number which distinguishes between particle and anti-particle for
the ��, it is said to be its own anti-particle.

Weyl particles represent another type of fermion modeled by a two-component
spinor, but they should be contrasted with Majorana particles. Both types of parti-
cles might have the same two components, but Weyl particles are explicitly massless.
One cannot therefore transform a Weyl particle to its anti-particle via a Lorentz boost.

It should be noted that in the Standard Model it is very difficult to distinguish Dirac
from Majorana neutrinos. The weak Lagrangian only involves the left-handed compo-
nents of neutrinos, and in the limit of vanishing masses there is no difference between
Dirac and Majorana particles at all. Certain lepton number violating processes (neutri-
noless double �-decay, e.g.) can only occur if neutrinos have Majorana mass, but for
the measurement of this thesis there is no such distinction.

1.2.2 Direct limits on neutrino masses

Most of direct limits on the mass of the �e (m�e) to date come from fits to the endpoint
of the energy spectrum in tritium �-decay. These experiments actually measure m�,
not m, and most best fits to data suggest a negative value of m�, which is clearly non-
physical. Furthermore, recent groups have reported that unknown effects lead to an
excess of events in the electron energy spectrum near the the endpoint. Nonetheless,
the Particle Data Group (PDG) has quoted an upper limit on m�e of 15 eV/c� with the
following caveat:

Given the status of the tritium results, we find no clear way to set a mean-
ingful limit onm�e . On the other hand, a mass as large as 10–15 eV would
probably cause detectable spectrum distortions near the endpoint. [28]

An interesting way to set a limit on m�e presented itself with the detection of neu-
trinos from SN 1897A. Massive particles of differing energies should travel at different
speeds, so the correlation of energies with arrival times for the neutrinos detected from
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Neutrino Mass Limit

�e 15 eV/c�

�� 170 keV/c�

�� 18.2 MeV/c�

Table 1.1: Direct neutrino mass limits.

this supernova should give an estimate of m�e . The PDG gives one conservative limit
based on this approach of m�e � �� eV/c�.

The best direct limit on the muon neutrino mass (m��) is from a pion decay (�� �
����) experiment [35], where the mass is inferred from the value of the muon momen-
tum in direct analogy to the way m�e is measured in �-decay. The upper limit from
this experiment is m�� � �
 keV/c�. More stringent limits (down to a few keV/c�)
can be made using cosmological arguments, but these are highly model-dependent, and
often only hold for Dirac neutrinos (discussed in Sec. 1.2.1).

Measuring m�� is much more difficult than measuring either of the other two neu-
trinos’ masses. Constructing a �-emitter (like tritium is for �e or pions are for ��) is
harder because of the large mass of the �. In addition, while the electron is stable and
the muon has a relatively long lifetime, the � decays almost instantly at practical labo-
ratory energies. Instead, the most straightforward technique for measuring the mass is
to reconstruct the “missing” energy and momentum in hadronic final states of � decays.
In the hadronic decay modes, only the �� will escape detection, so the missing energy
and momentum belongs to it. (In leptonic � decays, there are two neutrinos which carry
away a higher fraction of the energy.) The difference of the squares of energy and mo-
mentum gives m�

��
. Using this approach, the ALEPH collaboration has put the best

limit [36] on the ��mass: m�� � ��	� MeV/c�.

The best direct mass limits obtained for the three species of neutrinos are summa-
rized in Tab. 1.1.

1.3 Neutrino Oscillations

Neutrinos are created in weak charged current (CC) interactions, which produce eigen-
states of the weak interaction (sometimes called flavor neutrinos): j��i, � � fe� �� �g.
The physical states (mass eigenstates) are in general not identical to the weak eigen-
states, but they can be related by a unitary transformation. For n states j��i 	 	 	 j�ni
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with masses m� 	 	 	mn, and ignoring time evolution, we have:

j��i �
nX
k��

U�k j�ki � (1.5)

where U is a unitary matrix.

1.3.1 Vacuum oscillations

1.3.1.1 General case

A �� at its moment of creation is a superposition of n mass states.3 If the neutrino is
produced in a definite momentum eigenstate with eigenvalue P, then the mass states
will have energies Ek �

p
P� �m�

k with k � � 	 	 	n. So, if the masses are non-
degenerate, the mass states will have different energies. Since it is these physical mass
eigenstates (not the flavor states) which evolve freely in time, the time evolution of the
flavor neutrinos is:

j���t�i �
nX
k��

e�iEktU�k j�ki 	 (1.6)

If at least some of the masses mn are different from each other, these mass states
will evolve differently in time so that j���t � �i �� j����i. The amplitude for finding
a flavor state j�i at time t in an originally pure beam of j��i is:

h�j���t�i �
X
j�k

h�jjUy
je

�iEktU�k j�ki

�
X
k

e�iEktU�kU
�
k	 (1.7)

At t � , e�iEkt � � and
P

kU�kU
�
k � ��, so the amplitude is h�j����i � ��,

as expected. At t � , the probability of finding � in a �� beam is the square of the

3n is normally taken to be three, to correspond to the number of light flavor neutrinos, but it may be
more. n � � implies the existence of sterile neutrinos that do not participate in the weak nuclear force.
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amplitude:

P������t� � jh�j���t�ij�
� h�j���t�i h�j���t�i�

�
X
j

e�iEjtU�jU
�
j

X
k

eiEktU�
�kUk

�
X
j�k

e�i�Ej�Ek�tU�jU
�
jU

�
�kUk

�
X
j�k

e�i�Ej�Ek�t
		U�jU

�
jU

�
�kUk

		 ei���jk
�
X
j�k

e�i��Ej�Ek�t����jk�
		U�jU

�
jU

�
�kUk

		
�
X
j�k

		U�jU
�
jU

�
�kUk

		 cos ��Ej � Ek�t���jk� � (1.8)

where ��jk � arg�U�jU
�
jU

�
�kUk�. The last step is justified since we know the

sum to be real by construction, and can therefore ignore the imaginary parts of the
summands.

Now, assuming the masses to be much smaller than the momentum, we can expand
the energies of the mass states as:

Ek �

q
P� �m�

k � P

r
��


mk

P

��
� P

�
��

�

�


mk

P

��
� � � �



� P�
m�

k

�P
	 (1.9)

Thus,

Ej � Ek �
�
P�

m�
j

�P

�
�

�
P�

m�
k

�P

�

�
m�

j �m
�
k

�P
� �m�

jk

�P
	 (1.10)

Also, since the neutrinos are highly relativistic, distance travelled is approximately
equal to time:

L

t
� c � � �� L � t	 (1.11)
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Putting Eqs. 1.8, 1.10, and 1.11 together, we get:

P������t� �
X
j�k

		U�jU
�
jU

�
�kUk

		 cos

�
�m�

jkL

�P
���jk

�
	 (1.12)

Sometimes it is useful to define a characteristic distance scale Ljk for j � k oscil-
lations at momentum P:

Ljk � ��P

�m�
jk

	 (1.13)

Then Eq. 1.12 reads:

P������t� �
X
j�k

		U�jU
�
jU

�
�kUk

		 cos

�
��L

Ljk
� ��jk


	 (1.14)

1.3.1.2 Two-family oscillations

If we consider oscillations between only two lepton families, the situation is consider-
ably simpler. The general unitary matrix is real and can be characterized by a single
parameter, the mixing angle �:

U �

�
cos� � sin�
sin� cos �

�
	 (1.15)

Since U is real, all values of � are zero, and Eq. 1.12 becomes:

P������t� �
X
j�k

jU�jUjU�kUkj cos
�m�

jkL

�P
	 (1.16)

If we restrict ourselves to the non-trivial case where � �� �, we have:

P������t� �
X
j��k

jU�jUjU�kUkj cos
�m�

jkL

�P
�
X
k

U�
�kU

�
k

� �U��U��U��U��� �z �
� sin� � cos� �

cos
�m�

jkL

�P
� � sin� � cos� �

� � sin� � cos� �� �z �
�
�

sin� ��

�
�� cos

�m�
jkL

�P

�
� �z �

� sin�
�
�m�

jk
L

	P

�
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P������t� � sin� �� sin�
�
�m�

jkL

�P

�
	 (1.17)

In laboratory units, and inserting the appropriate factor of h̄c, this is:

P������t� � sin� �� sin�
�
�	�
�m�

jk�eV
��c��L�m�

P�MeV�c�

�
	 (1.18)

Thus, for a given experiment, looking at a neutrino beam of momentum P at a
distance L from the source, the probability of oscillation is a function of only two
parameters. Typically, experiments quote results in terms of the parameters sin� �� and
�m�, by excluding a region of two dimensional phase space (e.g. Fig. 1.11).

1.3.2 Matter oscillations

Wolfenstein pointed out [38] that when travelling through matter, the forward scatter-
ing of neutrinos becomes important. The interaction terms in the Hamiltonian lead to
changes in the effective mass of particles travelling through a medium. A similar case
is that of an electromagnetic wave which travels at c in vacuum but, picking up an ef-
fective mass, travels slower in a medium with non-zero index of refraction. Likewise,
neutrinos passing through matter gain effective masses through the weak interactions;
alternately, the medium can be said to have a “weak index of refraction”, which is in
general different for each type of neutrino.

1.3.2.1 Neutrino wave equations

Although neutrinos have non-zero spin, for very relativistic neutrinos the spin is ir-
relevant. The SM weak interaction only couples to the left-handed component of the
neutrino field, and since chirality is conserved up to O�m�E�, only the left-handed
component need be considered for m	E. Thus, whether a neutrino is a Dirac or a Ma-
jorana particle, neglecting the spin component of the wave equation yields the (spinless)
Klein-Gordon equation:

����
� �m�

k� j�kiL � 	 (1.19)

For n neutrino states with in general different masses, j�kiL becomes an n-dimen-
sional column vector  k andm�

k is replaced by an n�n diagonal matrix, M�. Leaving
the subscript k as a reminder that the elements of  k are mass eigenstates, this is:

����
� �M�� k � 	 (1.20)
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1.3.2.2 Propagation in vacuum

If we consider the propagation of mass states with equal momenta p in vacuum, the
space derivative yields a common term for all states. The resulting second-order differ-
ential equation

��

�t�
 k � �p� �M�� k (1.21)

can be solved trivially, yielding two solutions. Ignoring the negative energy solution,
we end up with the first-order Schrödinger-like equation:

i
�

�t
 k � H k� (1.22)

where we have used j�kiL � exp��iEkt�. In the mass eigenstate basis, H is diagonal
with elements Ek �

p
m�

k � p
�.

In the weak eigenstate basis, we can make the simple substitution H � H� �

UHUy, with U coming from Eq. 1.5:

i
�

�t
 � � UHUy �� (1.23)

where  � is the column vector of the weak eigenstates j��i.
For the case of two-neutrino oscillations,U is given by Eq. 1.15 and

H� � p�
!m�

��

�p
�
�m�

��

�p

�
� cos �� sin ��

sin�� cos ��

�
� (1.24)

where �m�
�� is given by Eq. 1.10 and !m�

�� is defined analogously:

!m�
jk � m�

j �m
�
k	 (1.25)

1.3.2.3 Propagation in matter

The interaction terms in the Hamiltonian alter the picture somewhat. The neutral cur-
rent component (Fig. 1.1a) is the same for all active (non-sterile) neutrino flavors. The
magnitude of the charged current interaction (Fig. 1.1b) will be greater for �e than for
�� or ��, though, since the electron density in normal matter is greater than the � or �
densities, which are negligible.
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Figure 1.1: a) Neutral current and b) charged current interactions of neutri-
nos in normal matter. Since normal matter contains almost no �
or �, the charged current interaction is shown only operating on
�e.

We can write the interaction Hamiltonian for the charged current reaction as

Hint
CC �

GFp
�
e����� ����e�e����� ���e

� �

X
X
X
X
X
X
XX�

�
�
�
�
�
��

Fierz reorder

�
GFp
�
�e�

���� ����ee����� ���e	 (1.26)

Averaging the electron part of this gives

Hint
CC �

p
�GFf�eL�

��eLghe����� ���ei	 (1.27)

In the non-relativistic limit, the axial vector part of this picks out spin, but the expecta-
tion value of the spin of unpolarized electrons is zero. Likewise, the spatial indices on
the vector term describe the electron velocity, but the expectation value is again zero
in the reference frame where the matter is at rest. The only non-trivial term in the av-
erage is thus he��ei � heei, which is just the electron number operator Ne. Thus,
the CC interaction Hamiltonian modifies the potential of the neutrino by an amount
VCC �

p
�GFNe.

The neutral current contributions to the Hamiltonian are the same for all active
neutrino species. Contributions from interactions with electrons, protons, and neutrons
can be summarized by the interaction Hamiltonian

Hint
NC �

p
�GF

X
f

nf

h
I
�f�

�L � � sin� �WQ
�f�
i
� (1.28)

where f � fe� p� ng, Q is the electric charge, and I� is the third component of weak
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isospin. For electrons and protons the addends are equal and opposite, so in electrically
neutral matter their contributions exactly cancel. The only remaining part is an effective
potential VNC � �

p
�GFNn��, where Nn is the neutron number operator. 4 This will

lead to differences for active-sterile oscillations as the CC interactions do for �e � ��.
These additional potential terms may now be included in the analogue of Eq. 1.23,

where H� now becomes

H� � UHUy � VCC j�ei� VNC

X
active

j��i 	 (1.29)

Assuming only the two neutrinos �e and �� for simplicity, this is

H� � p�

p
�GFNn

�
�
!m�

��

�p
�
�

�p

�
��m�

�� cos ��� �A �m�
�� sin ��

�m�
�� sin �� �m�

�� cos ��

�
�

(1.30)

where A � �
p
�GFNep. As usual for a � � � matrix, the diagonalizing angle, �̃, is

given by

tan ��̃ �
�H��

H�� �H��

�
�m�

�� sin��
�m�

�� cos ���A
	 (1.31)

If A � �m�
�� cos ��, the effective mixing angle goes to ���. Thus the effective

mixing can be maximal between �e and �� in matter, even if the vacuum mixing angle
� is very small. Figure 1.2 shows a plot of sin� ��̃ as it goes through its resonance. The
half-width of the peak is proportional to �m�

�� sin ��.

1.3.2.4 The MSW effect

Consider the form of the effective mixing angle in Eq. 1.31. If we take the limit ofA�
�� (or at least A
 �m�

�� cos ��), tan ��̃ goes to �, which means that �̃ approaches
��� as long as it is required to be positive. This represents a state of maximal mixing,
where the �e is almost entirely made up of the heavier state ��, whereas the �� state
is almost all ��. In the other extreme, where A � , we have the vacuum oscillation
parameters, as expected: �̃� �. If the vacuum mixing angle is small, then the �e state
should be mostly �� with the �� being ��.

If it is possible to create neutrinos in a region whereA is sufficiently large and prop-
agate those neutrinos out to a near-vacuum region, one would effectively be swapping
�e for �� and vice versa. For example, suppose the electron density in the Sun were
sufficiently high so that �e created in nuclear reactions there were composed of mostly

4See Sec. 9.3 in reference [40].
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Figure 1.2: The effective mixing angle in matter, sin� ��̃ as a function of
neutrino momentum, showing the resonant peak. �m�

�� is taken
to be ��� here, sin� �� is ���, and the electron density is taken
to be one mole per cm�.

��. The �� would then propagate outward into space, where A � . When these ��
reinteract, they would then be mostly ��. This is the essence of the MSW effect, named
for Wolfenstein, who first described matter oscillations, and for Mikheyev and Smirnov,
who noted [39] that this level-crossing behavior might be important in describing solar
neutrino fluxes.

1.3.3 Experimental considerations

One fairly obvious but important caveat about neutrino oscillation experiments is that
they do not measure neutrino masses directly; instead, they measure the differences
between the squares of masses. This distinction may come into play in discussions
of the cosmological significance of neutrino mass. It is commonly assumed that the
largest mass difference represents the approximate mass of the heaviest mass neutrino,
and that the masses of the other neutrinos are negligible. In this case, the sum of the
neutrino masses could be very small; however, the aggregate mass of three neutrinos of
nearly degenerate masses may be much larger.

Another point is that a positive result for neutrino oscillations demonstrates neutrino
mass, but the inverse does not hold. If the flavor and mass eigenstates are identical or
if the masses are truly degenerate, no flavor oscillations will occur.
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1.3.3.1 Appearance vs. disappearance experiments

Experiments looking for neutrino oscillation can be categorized as either appearance or
disappearance experiments. In the archetypal appearance experiment, one begins with
a pure beam of one type of neutrino (of arbitrary flux). Then the detection of any other
type of neutrino in this beam is a “smoking gun” signature of neutrino oscillation. In
an appearance experiment, only a small fraction of the beam needs to oscillate (or, the
beam needs to oscillate with only a small probability) in order to detect the oscillation.

Disappearance experiments must know the flux of the beam precisely. They look
for a deficiency in the known flux at their detector. A typical disappearance experiment
would be one at a reactor, where the neutrino source is essentially a point. Then, one
would perform two measurements of the neutrino flux at two distances from the reactor
core. One measurement would measure the flux and, given the solid angles subtended
by the two detectors, would also predict the flux at the other. Any deviation from
this prediction would signal some sort of loss (or enhancement) of the neutrino beam,
possibly from oscillation. This type of experiment with two detectors is called a near-
far experiment, for obvious reasons. At an accelerator, a disappearance experiment
should be performed with three detectors: two to measure the flux and divergence of
the beam, and the third to check for deviations from predictions.

Disappearance experiments potentially provide less information about neutrino os-
cillations than appearance experiments. Since they do not observe the final state, disap-
pearance experiments cannot tell into which flavor a neutrino has oscillated. Because
they need to observe a deficiency in the beam, rather than simply see a few events, they
are not sensitive to very small oscillation probabilities. Also, apart from oscillations,
other perhaps more exotic explanations may account for deficiencies in neutrino beams,
examples being neutrino decay [41], flavor-changing interactions [42], transition mag-
netic moments [43], and inherent neutrino non-orthonormality [44].

1.3.3.2 Experimental sensitivities

From the form of the oscillation amplitude (Eq. 1.7), one notes that no oscillation will
occur if the exponential is unity. For the oscillation between two neutrino species
(Eq. 1.18), this translates to the following requirement:

�m��eV�� �
P�MeV�c�

L�m�
	 (1.32)

Detecting neutrino oscillations at small values of sin� �� is more complicated. As
�m� gets large, the second sin� term in Eq. 1.17 rapidly oscillates. Averaging this term
to 1

2 , we see that the oscillation probability is directly related to the parameter sin� ��.
In order to probe small values of this parameter, then, an experiment must be able
to detect small oscillation probabilities. This is in general a complicated function of
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Experiment Events L (m) E (MeV) sin� �� �m�(eV�)
Solar �� ��� �� ��� ����

Atmospheric �� �	 �� ��� ���

Reactor SB �� �� �� ��� ���

Reactor LB �� �� �� ��� ���

Meson Factory �� �� �� ��� ���

Accelerator SB �� �� �� ��� ��

Accelerator LB �� �� �� ��� ���

Table 1.2: Typical neutrino experiment configurations and sensitivities to
oscillation parameters. SB=Short-Baseline, LB=Long-Baseline

the analysis, including the detection efficiencies, the number of expected background
events, and the confidence level. A naı̈ve estimate is that for an analysis with zero
expected background and a 6% detection efficiency for the “wrong type” of neutrino in
an otherwise pure beam, then for large �m� oscillations would be detected at the ��
level for

sin� �� �
�

N
� (1.33)

where N is the total number of CC events detected by the experiment.
Given the guidelines given by Eqs. 1.32 and 1.33, the expected sensitivities of dif-

ferent types of experiments can be estimated. Table 1.2 gives an order of magnitude
listing for different types of experiments.

1.4 Experimental Evidence for Oscillation

Many experiments have searched for evidence of neutrino oscillations. This section
will examine some of the experiments that have been done, and quote their results.

This section is organized into five subsections, grouping experiments according to
neutrino production. This grouping also roughly correlates with increasing �m�, al-
though there is some overlap. Those experiments capable of detecting the very low
energy (�10 MeV) neutrinos from the Sun are in the first section. Experiments to de-
tect the �e and �� flux coming from cosmic rays in the earth’s atmosphere are grouped
in the next section. Next are the detectors designed to observe the �e flux emitted
by nuclear reactors. Medium energy proton accelerators can produce large amounts
of �e, ��, and ��, and oscillation searches at such meson factories are considered to-
gether. Finally, high energy accelerators can produce beams of neutrinos from meson
decays-in-flight, and these are considered in the last subsection. Some experiments
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Source Reaction hE�i (MeV) Max. E� (MeV)

pp p� p� d � e� � �e 	�""� 	���� 	�
pep p� e� � p� d� �e �	��� �	���
7Be e� � 7Be � 7Li � �e 	����� 	�"�� 	����� 	�"��
8B 8B � 8Be � e� � �e "	
��� 	�" � ��

Hep 3He � p� 4He � e� � �e �	"�� ��	

�
13N 13N� 13C � e� � �e 	
"� �	����� 	�
15O 15O � 15N � e� � �e 	��"� �	
��
� 	�
17F 17F � 17O � e� � �e 	��

 �	
�"�� 	�

Table 1.3: Solar neutrino sources and energies. Values obtained from
Ref. [46].

(KamLAND, e.g.) are sensitive to neutrinos from more than one type of source, and
they are mentioned in all relevant subsections.

1.4.1 Solar neutrinos

In addition to electromagnetic energy, the Sun emits about 2% of its radiation in the
form of electron neutrinos. At the earth’s surface, the flux should be roughly "	� �
����cm��sec. These neutrinos come from several nuclear reactions inside the Sun,
which can be grouped into one of two families: the pp cycle (Fig. 1.3) and the CNO cy-
cle (Fig. 1.4). The energy distributions and fluxes of these neutrinos (Fig. 1.5, Tab. 1.3)
can be calculated within the framework of the Standard Solar Model (SSM) [45].

Because of the extremely low energies of the �e’s from the Sun, only disappearance
experiments are performed; the neutrinos are below the energy threshold for � or �
creation in CC interactions. Near-far experiments are impractical, so the measured �e
flux at the earth is compared to the theoretical predictions.

The first measurement of solar neutrinos at the Homestake gold mine in the 1960’s
showed [47] that the measured flux was significantly less than theory predicted. The
Homestake detector is a large underground tank of tetrachloroethylene (Cl2C�C Cl2),
and solar neutrinos are detected through the process

�e � Cl37 � e� � Ar37� (1.34)

where the (radioactive) argon atoms are counted as they decay. Since the photons we
see come only from the outer layer of the Sun, the Homestake experiment was designed
to use neutrinos to probe the Sun’s inner structure. After the initial results became avail-
able, however, the focus changed towards the study of the properties of the neutrinos
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Figure 1.3: The pp cycle. Figure reprinted from Ref. [46].
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Figure 1.4: The CNO cycle. Figure reprinted from Ref. [46].

themselves. Improvements in the SSM and in the experimental measurements have
only made the discrepancy more stark, so further experiments were devised.

Since the chlorine �e capture process of Eq. 1.34 has a threshold of around 850 keV,
the Homestake detector is not sensitive to the plentiful but low-energy pp neutrinos (see
Fig. 1.5). In order to take advantage of these neutrinos two experiments were designed
using gallium as a target. Gallium undergoes the equivalent process to Eq. 1.34:

�e � Ga71 � e� � Ge71 (1.35)

with an energy threshold of 233 keV, and the germanium is detected through its sub-
sequent decay. The SAGE [48] detector, located underground in Russia’s Baksan
Neutrino Observatory, consists of fifty-five tons of liquid gallium metal, whereas the
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Figure 1.5: Estimated energy distributions for solar neutrinos in the SSM,
showing the sensitivities of different types of detectors.

GALLEX [49] experiment uses a solution of gallium chloride.
In addition to the radiochemical detectors, Kamiokande [50] and its successor Su-

per-Kamiokande [51] are water Cherenkov detectors, used for both solar and atmo-
spheric neutrino studies. The targets are purified water, and light emitted inside the
targets is detected in large arrays of photomultipliers. These detectors are sensitive to
the Cherenkov light emitted by a recoil electron from a solar neutrino elastic scattering
event as the electron traverses the detector. 5 Although only sensitive to the relatively
high energy 
B and hep neutrinos (see Fig. 1.5), the water Cherenkov detectors give
more information about the neutrino capture events. They can measure the direction of
the recoil electron, showing that the neutrinos come from the Sun, they can measure
the time dependence of the neutrino events (day vs. night, e.g.), and they can measure
the energy of the recoil electrons.

The results of all these experiments are consistent with each other and inconsistent
with the SSM. Table 1.4 lists the SSM predictions and the experimental results.

These results can be interpreted in a number of ways. If neutrino oscillations are
used to account for the difference between experiment and theory, one may define pre-

5For the higher energy atmospheric neutrinos, both electrons (from �e CC events) and muons (from
�� CC events) can be identified by their individual Cherenkov light signatures.
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Experiment Type SSM Prediction Measured Exp
SSM

Homestake Cl �	��������� �	��� 	��� 	�� 	�
�� 	��
SAGE "�� ����	 	��� 	��
GALLEX Ga ��
�
�	 "�	
� "	
�������� 	��� 	��
Combined "�	�� "	
 	�
� 	��
Kamiokande �	�� 	��� 	�� 	���� 	��
Super-K H�O "	"����������� �	������������ � 	�� 	�
�� 	��
Combined �	��"� 	��� 	���� 	��
Table 1.4: Solar neutrino fluxes and the SSM predictions. Units are SNU

(1 Solar Neutrino Unit (SNU) = ���� interactions per tar-
get atom per second) for the radiochemical experiments and
��cm��sec�� for the water Cherenkov experiments. Values ob-
tained from Ref. [52].

ferred regions in a sin� �� vs. �m� plot, and several of these may be drawn depending
on which type of oscillation is used. Assuming MSW oscillations in the Sun (�e � ��
or �e � ��), two distinct regions of phase space may be allowed: the small and large
mixing angle solutions. (See Fig. 1.6.) Also possible are MSW �e-sterile oscillations
and vacuum oscillations, shown in Fig. 1.7.

In addition to the experiments which have already produced results, there are several
experiments which may provide more insight into the solar neutrino deficit in the near
future. The Sudbury Neutrino Observatory (SNO) experiment [53], which is currently
taking data, uses a heavy-water (D�O) Cherenkov detector to observe both NC and
CC events. This should provide information on both the flux of �e and the flux of
all non-sterile neutrinos crossing the detector, which should determine whether the
oscillations are active-active or active-sterile. The ICARUS experiment [54], scheduled
for installation in the Gran Sasso Laboratory in Italy in 2000, will use a large liquid
argon time projection chamber (TPC), and it should have similar detection capabilities
to SNO.

Borexino6 [55] and KamLAND7 [56] use liquid scintillators and should be able
to combine the time and directional capabilities of a water Cherenkov detector like

6The Borexino collaboration successfully built and operated a prototype of their detector from 1994–
1996, and construction is now under way on the full-scale detector in Hall C of the Gran Sasso Labora-
tory, with an expected completion date of 2001. The neutrino sensitivity is expected to reach down to
250 keV.

7The Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) is a dual-purpose neutrino
detector currently under construction in Japan. It it scheduled to begin taking data in 2001, and will
observe both solar neutrinos and reactor neutrinos.
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Figure 1.6: Favored phase space regions for solar MSW oscillations. Shad-
owed regions represent the 99% confidence regions. Results of
a fit to data from Tab. 1.4, taken from Ref. [46]. The left plot
uses the neutrino rates only, the right plot also uses energy spec-
trum and zenith-angle distributions from the Super-Kamiokande
experiment.

Kamiokande with the low energy threshold of the gallium experiments. Both experi-
ments claim to be sensitive to pp neutrinos.

Future proposed experiments include the liquid scintillator LENS experiment at
Gran Sasso; HELLAZ [57], which will use a helium gas TPC for tracking, also at Gran
Sasso; and HERON, which proposes to use a �10 ton target of superfluid helium. These
experiments also purport to measure the pp solar neutrino spectrum.

1.4.2 Atmospheric neutrinos

Cosmic rays incident on the upper atmosphere of the earth produce particle showers
containing large amounts of charged pions. These pions decay through the chain

�� � ����� e��e�� (1.36)
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Figure 1.7: Favored phase space regions for solar neutrino oscillations.
Shadowed regions are the 99% confidence regions. Left
plot shows MSW active-sterile oscillation parameters, right
plot shows vacuum oscillation parameters. Plots taken from
Ref. [46].

and its charge conjugate equivalent. At the surface of the earth, therefore, there are
approximately twice as many �� as �e.8 The flux at the earth’s surface is approximately
1�cm��sec. Although the absolute fluxes of the neutrinos can only be calculated with
a certainty of 20%, the ratio ����e can be predicted [58] to better than 5%. In order to
cancel systematic uncertainties, experiments normally report the ratio of ratios:

R � �����e�exp

�����e�MC

	 (1.37)

If neutrinos oscillate, then measurements ofR should produce values different from
unity. If �e oscillate into any other species, there will be a deficit of �e and R will be
greater than one. Likewise, if �� oscillate into another species, R will be less than
one. There are other explanations for a non-unit R, however. As in the case of solar
neutrinos, neutrino decay [59] and FCNC [60] have been proposed as viable solutions
to an atmospheric anomaly.

In addition to the ratio R, experiments that can distinguish upward-going from
downward-going neutrinos have another handle on neutrino oscillations. Neutrinos
originating directly above the detector travel downward about 10 km through the at-

8At neutrino energies greater than 3 GeV the ratio of �� to �e increases since higher energy muons
may not decay before they reach the earth.
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mosphere and earth’s crust. Since the upward-going neutrinos must travel though the
entire earth before reaching the detector, their path lengths are correspondingly longer,
up to 13 000 km. If the oscillation length is on the same scale as this difference, the
data should show a corresponding flux anomaly.

Atmospheric neutrino detectors are usually located in deep underground halls in
order to filter out the associated atmospheric muons. The first experiments to record
atmospheric neutrino interactions were performed in the 1960’s in India [62] and South
Africa [61], but they lacked the statistics to perform an accurate flux measurement.
In the 1980’s several new experiments began recording atmospheric neutrino fluxes in
earnest, and in 1986 the first suggestion [63] of a non-unit R was found by the IMB
collaboration.

In the 1980’s several detectors were built to look for proton decay, but they were also
sensitive to atmospheric neutrinos. The IMB [64] and Kamiokande [65] experiments
used water Cherenkov detectors, and they measured a ratio R significantly less than
one. (See Tab. 1.5.) NUSEX and Fréjus [66] were fine-grained iron plate calorimeter
detectors, and both measured R � �. Both types of detectors were sensitive to the
lepton type (e or � only), and to its direction (and hence to the direction of the incident
neutrino); but neither were sensitive to the lepton charge, so they could not distinguish
between �� and �� events.

Because of the discrepancy in the measured value of R, and especially because
the discrepancy seemed to correlate with detector type, two more sensitive detectors
were built. Super-Kamiokande was a larger water Cherenkov detector built in the same
Kamioka mine in Japan as the earlier Kamiokande detector, and Soudan-2 was an iron-
plate calorimeter built in the Soudan mine in northern Minnesota. These newer exper-
iments agreed with each other and with the earlier water Cherenkov measurements. In
fact, because of their relatively poor precision, the early calorimeter results only differ
by 1–2 standard deviations. Table 1.5 shows the results for the ratio R obtained by all
six experiments.

First Kamiokande and now also Super-Kamiokande have also found more evidence
to support the hypothesis of neutrino oscillations in the angular dependence of their
atmospheric neutrino data. For a given solid angle, the flux entering from the antipodes
should be equal. The flux from above comes from a surface area in the atmosphere that
is smaller than that from below by a factor L�, but the flux from below is decreased by
the same relative amount because of dispersion. However, Kamiokande found [71] a
slight zenith angle dependence in their multi-GeV �� sample, and Super-Kamiokande,
with much better statistics, found [73] a more pronounced dependence in both the sub-
and multi-GeV samples. (See Fig. 1.8.)

Another way to view the Super-Kamiokande oscillation evidence is to plot the ratio
of data to Monte Carlo as a function of the variable L�E�. From Eq. 1.17 or 1.18 one can
see that the oscillation probability should vary directly with the square of L�E� for small
�m�, and the ratio of data to Monte Carlo would just be ��P. Super-Kamiokande can
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Experiment Type R

IMB [67] H�O 	��� 	�� 	��
Fréjus [68] Fe Cal. �	� 	��� 	�
NUSEX [69] Fe Cal. 	�"���������


Soudan-2 [70] Fe Cal. 	"�� 	��� 	�
Kamiokande [71] H�O 	"����	����� � 	�
(multi-GeV [72]) 	�
����
����	 � 	

Super-Kamiokande [73] H�O 	"�� 	�� 	�
(multi-GeV [73]) 	"�� 	�� 	�

Table 1.5: Results on the ratio R for the different atmospheric neutrino
experiments to date. The two results given for Kamiokande
and Super-Kamiokande represent the sub-GeV and multi-GeV
events, respectively.

Oscillation sin� �� �m� (eV�) #� d.o.f.

�� � �� � �	�� ��� 6.21 6.7
�� � �s � �	�� ��� 64.3 67

Table 1.6: Best-fit values for the oscillation parameters �m� and sin� ��
from the up-down asymmetry in the Super-Kamiokande data.
Reprinted from Ref. [77].

estimate the neutrino energy by measuring the outgoing lepton’s energy, and they can
estimate the distance travelled, L, by the correlation between L and neutrino direction.
Figure 1.9 shows the results from the Super-Kamiokande fully contained � and e event
samples.

The fact that the electron spectrum is not distorted suggests that �� is not oscillating
into �e. The long-baseline reactor experiment CHOOZ has been able to verify [76] this
in the relevant region of phase-space. This leaves �� � �� and �� � �s as the only
possible oscillation solutions to the Super-Kamiokande data. The best-fit parameters
for their data are summarized in Tab. 1.6.

1.4.3 Reactor neutrinos

Nuclear reactors produce copious amounts of �e in�-decay reactions inside their cores.
Because of the large fluxes, reactor experiments were the first to probe small values
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Figure 1.8: Super-kamiokande up-down asymmetry. The hatched regions
show the Monte Carlo-predicted 1� confidence intervals for the
assumption of no oscillations. The dashed line is the expected
value for �� � �� oscillations with �m� � �	�� ���eV� and
sin� �� � �	 Figure reprinted from Ref. [74].

of sin� ��; however, because the neutrinos are produced essentially isotropically, the
detectors were usually located near the reactor core (short-baseline). Because of the
low �e energies, reactor oscillation experiments are run in disappearance mode; thus,
they are sensitive to �e � �x oscillations only.

The three short-baseline reactor experiments Bugey [78], Gösgen [79], and Kras-
noyarsk [80], did not find evidence of neutrino oscillations. The evidence from atmo-
spheric and solar neutrino experiments suggested that the �m� values were too high in
these experiments, so long-baseline reactor experiments were proposed.

Long-baseline reactor experiments need high neutrino fluxes (high power reactors),
so they generally take place at commercial power reactors instead of research reactors.
The CHOOZ experiment [76] in France uses the neutrinos from two reactors located
1.0 km away, and the Palo Verde experiment [81] in California uses three reactors
located 0.8 km away. These two experiments each use a Gadolinium-doped liquid
scintillator for detection, and are sensitive to similar regions of phase-space. They
have already excluded the possibility of �� � �e as an explanation of the atmospheric
neutrino results.



1.4: EXPERIMENTAL EVIDENCE FOR OSCILLATION 29

1 10 10
2

10
3

10
4

10
5

0

0.5

1

1.5

L/Eν (km/GeV)

D
at

a 
/ M

on
te

 C
ar

lo

e-like

μ-like
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Another future long-baseline reactor experiment, KamLAND [56], may be able to
probe one of the solar neutrino MSW regions. This experiment will use the Kamioka
site in Japan to house its 1000 ton mineral oil liquid scintillator, and will be sensitive
to neutrinos coming from 5 separate nuclear power plants at varying distances away
(140 to 215 km). KamLAND is scheduled to begin data taking in 2001. Fig. 1.10
shows the projected sensitivity for KamLAND after three years of data, along with the
preliminary results from the other two long-baseline reactor experiments.

1.4.4 Meson factories

Meson factories use medium energy accelerators to produce �� and �� at energies in
the 10’s of MeV’s. Pions are typically produced in proton beam dumps, and these
decay at rest via the chain in Eq. 1.36 to produce the neutrinos. Since they are at
rest, the energy of the �� is 30 MeV, and the energies of the �e and �� are broadly
distributed with a maximum energy of 53 MeV. All three neutrino species are produced
with approximately the same abundances.

Since the only anti-neutrinos produced this way are ��, experiments can look for
an oscillation signal through the appearance of �e. �e interacts via the CC reaction

�e � p� e� � n� (1.38)
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where the neutron is subsequently captured, emitting a characteristic 2.2 MeV photon.
The spatial and temporal coincidence of the positron with the 2.2 MeV � represents a
clean signal for �� � �e oscillation.

Some of the pions (�3.4% in LSND, see below) decay in flight, producing higher
energy ��. These can interact with carbon in the detector to produce a single electron:

�e �
�� C � e� � X	 (1.39)

The �e background from � decay-in-flight is suppressed by the muon’s longer life-
time, and the energy spectrum is softer due to the three-body decay; the background
from �� � e� � �e is suppressed due to the small branching fraction (10��); and
the �e background from muon decay-at-rest lies entirely below the kinematic endpoint
of 53 MeV. So, the detection of a single electron with energy above about 60 MeV
represents a low background candidate for �� � �e oscillation.

The Large Scintillator Neutrino Detector (LSND) [83, 84] at Los Alamos and the
KArlsruhe Rutherford Medium Energy Neutrino (KARMEN) experiment [85] in Eng-
land are two meson factory neutrino experiments with similar sensitivities. Both use
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neutrinos produced in the beam dumps of 800 MeV proton beams, both detectors are
liquid scintillators, and neither is sensitive to the charge of the lepton.

LSND has reported evidence for �� � �e oscillations in two different channels.
First, they reported [83] an excess of �e events, in which the positron and photon from
neutron capture were correlated in space and time in their detector. Second, they ob-
served [84] an excess of �e events, in which the electron had energies in the range
60–200 MeV. The favored regions of phase-space from the LSND results are given in
Fig. 1.11.
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Figure 1.11: Allowed regions for ��(��) � �e(�e) from the LSND exper-
iment. The region between the solid lines is allowed at 95%
for ����e from the �� decay-in-flight analysis. The regions
enclosed by dotted lines are allowed at 99% for ����e from
the �� decay-at-rest analysis. Figure reprinted from Ref. [46].

The KARMEN experiment has not confirmed the LSND result. Using a similar
detector and similar analysis techniques, they see no anomalous events. The sensitivity
of the KARMEN experiment is not quite identical to LSND’s9 so it is not able to rule
out the entire allowed region. Fig. 1.12 shows the LSND allowed region along with
various exclusion curves, including the latest KARMEN results. One can see a small
allowed region below about 1 eV� which is not excluded by any experiment.

At least one future experiment has been approved to test the LSND result with much
higher sensitivity. The Booster Neutrino Experiment (BooNE) [87] at Fermilab will be-

9The KARMEN detector has a shorter baseline (18 meters as opposed to about 30 m for LSND), and
until a detector upgrade in 1996 it had a problem with cosmic ray backgrounds. It is projected to achieve
comparable sensitivity to LSND in one or two years [86].
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Figure 1.12: LSND 90% CL allowed regions (shaded) superimposed on the
exclusion curves from other experiments. The KARMEN ex-
clusion curve is derived from their Bayesian analysis. Plot
taken from Ref. [46].

gin data-taking in 2001 using protons from the 8 GeV booster to produce the neutrinos.
Other experiments with similar goals have been proposed at CERN (I-216 [88]), Oak
Ridge (ORLaND [89]), and at the future European Spallation Source (NESS [90]).
Clearly, the evidence is far from conclusive one way or the other.

1.4.5 Accelerators

Neutrino oscillation searches at accelerators are similar to the decay-in-flight analyses
of meson factories. Proton beams from high energy accelerators are focused onto a
target, from which secondary meson beams (mostly � and K) emerge. The secondary
beam can be momentum-selected and/or focused by beamline magnets, after which it
is allowed to decay in a dedicated (usually evacuated) volume. The beam remnants and
the decay muons are then absorbed and/or swept out by a magnetic field, so that at the
detector only a (somewhat diffuse) beam of neutrinos remains.

The important secondary mesons and their decays are listed in Tab. 1.7. The most
important are the pion and kaon decays. Muons are mainly produced in pion and kaon
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�� �e
Decay Br% c� (m) Decay Br% c� (m)

�� � ���� 99.99 7.8 K� � ��e��e 4.82 3.7
K� � ���� 63.51 3.7 K�L � ��e��e 38.78 15.5
K� � ������ 3.18 3.7 �� � e��e�� 100. 658.
K�L � ������ 27.17 15.5
�� � e��e�� 100. 658.

Table 1.7: Secondary decays that are important for neutrino production in
accelerator experiments. �� and �e are produced from the charge
conjugate reactions.

decays, so their production point is further down the beamline than the others. This,
along with the long lifetime of the muons and the fact that they undergo three-body de-
cay, suppresses the contribution of �e in the beam. Furthermore, if a positively charged
secondary beam is selected, the �� (from �� and K�) is also reduced. Thus, one can
generate a �90% pure �� beam. More importantly for �� � �� oscillation searches,
the neutrino beam in an accelerator-based experiment contains practically no ��.

The advantage of accelerators is the ability to control the production and detec-
tion of the neutrinos. Both the distance L and the momentum P (cf. Eq. 1.18) can
be controlled somewhat in order to probe specific regions of phase space. To get bet-
ter precision, the neutrino energy spectrum and production point can be modeled in a
Monte Carlo beamline simulation.

Accelerator experiments tend to fall into one of two categories. Fine-grained detec-
tors with high spatial resolution are needed to distinguish the � decay vertex in �� � ��
appearance searches. Examples of this type of experiment are FNAL-E531 (emul-
sion) [91], CHARM-II (bubble chamber) [92], and CHORUS (emulsion) [93]. Massive
calorimeters have a higher neutrino interaction cross section, and they only need to dis-
tinguish between electrons and muons for �� � �e searches. Examples of this type
are the Brookhaven experiments BNL-E734 [94] and BNL-E776 [95], CDHS [96] at
CERN, and CCFR/NuTeV [97] at Fermilab.

The NOMAD detector [98] at CERN has elements of both categories. It is a multi-
purpose, fine-grained, low density electronic detector with good momentum resolution
and electron identification capabilities. Although it cannot resolve the decay vertex
directly, it can identify � via kinematic considerations. Because of its momentum reso-
lution and particle identification, it is also able to make a sensitive �� � �e search.

None of these accelerator experiments has observed any evidence for neutrino os-
cillations. The exclusion plot for �� � �� is shown in Fig. 1.13.

If the correct interpretation of the atmospheric neutrino data (cf. Sec. 1.4.2) is as
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Figure 1.13: Exclusion plot for �� � �� oscillations, derived from
accelerator-based neutrino experiments. Figure taken from
Ref. [99]. Note that CHORUS has since updated their re-
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evidence for �� � �� oscillations, then the current accelerator-based experiments will
not be sensitive to them. The ratio L�P for these experiments is too small (cf. Eq. 1.32)
to probe the small �m� suggested by Super-Kamiokande. In order to explore this
region, several long-baseline accelerator-based experiments have been proposed.

The first experiment to begin taking data is the K2K experiment [101] in Japan. It
is examining a 1–2 GeV beam from KEK in the Super-Kamiokande detector, 235 km
away. K2K will also include a 1 kton water Cherenkov “near detector” to measure the
neutrino spectrum about 1 km from the KEK beam dump. Because of the low beam
energy, the neutrinos will be below threshold for � production; thus, K2K will only
be able to perform �� disappearance and �� � �e appearance analyses. Data-taking
began in March 1999, and it is expected to be sensitive to �m� � �� ���eV�.

The MINOS experiment [102] will detect neutrinos produced by Fermilab’s Main
Injector at one detector on-site at Fermilab and another 730 km away at the Soudan
mine in northern Minnesota. The neutrinos will have an average energy of �10 GeV,
so �� � �� appearance searches are possible with a sensitivity of �m� � ���eV�.
MINOS will also be sensitive to �� � �e and �� � �s oscillations, the latter being
evidenced by a deficit in the NC/CC ratio. MINOS is scheduled to begin taking data in
2003.

There are several proposals [103, 104, 105, 106] for experiments using a neutrino
beam from CERN near Geneva to the Gran Sasso laboratory in Italy, a distance of about
730 km. Of these, ICARUS is the first to win approval, and it is slated to begin in 2000.
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ICARUS will initially feature a 0.6 kton liquid argon detector, and will be expanded up
to an eventual fiducial mass of 2.4 kton. The neutrino beam energy is expected to be
�25 GeV, and its sensitivity should be equivalent to MINOS’.

1.5 The Case for NOMAD

An accelerator-based experiment like NOMAD is most sensitive to �� � �� oscil-
lations occurring in the region of very low sin� �� (�10��) and relatively high �m�

(�1 eV�/c�) compared to other types of neutrino oscillation experiments. Why is this
an interesting region in which to search for oscillations?

There seems to be a profound symmetry between the quarks and leptons: both come
in three families with similar mass hierarchies, the electric charges are closely related,
etc. It seems natural to presume based on this symmetry that if the leptons’ mass and
weak eigenstates mix as they do in the quark sector their mixing angles might also be
similar. The quark mixing angles are described by the CKM matrix, with sin� �� for
the two-family oscillations between the second and third families being �4–9�10��. If
the lepton sector follows this pattern, we might also expect 2–3 family oscillations with
similarly small mixing angles.

In addition, if the relative masses of the three families of neutrinos follow the pat-
tern of the quarks and charged leptons, the �� should be the heaviest neutrino by far,
so the mass difference between it and the �� should be large and nearly identical to
the �e–�� mass difference. Since neutrino beams can be constructed with very lit-
tle �� contamination, it is convenient to perform a high-mass oscillation search in an
accelerator-based �� appearance experiment. The choice of focus on �� � �� in-
stead of �e � �� is based on the neutrino beamline composition, which is comprised
principally of �� from �� and K� decay.

So, using quark–lepton symmetry arguments, one can see the rationale behind
searching for small mixing angles and for choosing the �� in a large mass oscillation
search. But symmetry alone cannot provide the motivation for searching for neutrino
mixing at large masses. This comes from cosmology.

The dark matter problem has become well-known in astrophysics: luminous matter
comprises only a small fraction of the known matter in the universe. The identity of this
dark matter is unknown, but the COBE results [107] on the anisotropy of the microwave
background radiation as well as measurements [108] of galaxy clustering suggest that
at least part of the dark matter must be hot, i.e. it was relativistic when it decoupled
from thermal equilibrium [109]. If neutrinos have mass, they would contribute to this
hot dark matter. Assuming that the dark matter is composed mainly of �� (assuming it
is the most massive neutrino), a mass of 1–10 eV/c� would account for the unobserved
mass in the universe. This is precisely the mass range that the NOMAD experiment is
designed to explore.
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Chapter 2

Apparatus and Data

The analysis in this thesis was performed on data taken over four years (1995–1998)
by the NOMAD collaboration at the CERN particle physics laboratory near Geneva,
Switzerland. This chapter describes the neutrino beam facility at CERN, the NOMAD
detector, the data collection, and the Monte Carlo simulated data.

2.1 West Area Neutrino Facility (WANF)

The West Area Neutrino Facility (WANF) [110] at CERN is the source of the wide band
neutrino beam that is simultaneously incident on both the NOMAD [98] and CHO-
RUS [93] detectors. This beamline (T9) has been used for neutrino physics since its
initial operation with the start of the Super Proton Synchrotron (SPS) in December
1976. The same facility, with a slightly different configuration, was also used for the
CHARM II experiment [111]. A schematic diagram of the WANF is shown for refer-
ence in Fig. 2.1.

BCT1

BCT2
SEMs

Target

Reflector

Tunnel
Decay

Iron Shield

Muon Pits

Earth

Chorus

Nomad

Al Collimator

Horn

TDX collimator

Figure 2.1: Schematic diagram of the West Area Neutrino Facility at CERN
(not to scale). The beam travels from left to right in this picture.

A Monte Carlo simulation program, called NUBEAM, has been written to model
the neutrino beam produced by the WANF. NUBEAM is based on the GEANT [112]
particle tracking package and the FLUKA [113] generator. The particle distribution
plots shown in this chapter were generated using NUBEAM version 5.02 and the stan-
dard FLUKA (FLUKA ’92) generator. Since this generator does not accurately reflect

37
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the extreme forward direction secondary particle distributions, two alternative models
have beem developed. One model [114] is based on an updated version of the generator
(FLUKA ’95), and the other [115] uses neutrino interaction data from NOMAD to em-
pirically parameterize the kaon and pion distributions at the T9 target. The flux tables
shown in this chapter and used in the analysis are derived from the average values of
these two NUBEAM modifications.

The SPS accelerates protons up to 450 GeV/c. It has a duty cycle of 14.4 seconds,
during which two proton extractions are made to the T9 target. These two 6 ms spills are
separated by about 2.7 seconds, and they each provide �10�� protons-on-target (p.o.t.)
per SPS cycle. Two beam current transformers (BCTs) measure the intensity of the
proton beam just prior to hitting the target, at which point it has a gaussian profile with
a 0.5 mm width.

The proton extractions impinge upon a target composed of eleven cylindrical beryl-
lium rods, each 10 cm long and 3 mm in diameter, with 9 cm gaps between them. The
gaps are inserted to reduce the number of secondary particle reinteractions within the
target material. The target thus has an effective length of 110 cm of Be, or 2.7 interac-
tion lengths ($I). Proton–beryllium interactions in the target create numerous charged
secondary mesons, mainly pions and kaons, whose total flux is measured in the sec-
ondary emission chambers (SEMs) just downstream of the target. Figure 2.2 shows the
energy distributions from the NUBEAM simulation for some of the secondary particle
species immediately after the target rods.

This secondary beam is collimated and focused in the 124 m long beam optics
section of the WANF, between the target and the decay tunnel. Two specially designed
toroidal magnets (labeled horn and reflector in Fig. 2.1 and operating at currents of 100
and 120 kA, respectively) focus positive particles while defocusing negatives. The TDX
collimator removes some of the defocused negative particles, while allowing positives
to pass through a hole in the middle.

The decay tunnel is a 290 m long evacuated pipe, which allows the pions and kaons
to decay in flight. Figure 2.3 shows the expected fluxes for some of the particle species
in the beam at the beginning of the decay pipe. Note the relative enhancement of the
positive particles vis-à-vis Fig. 2.2.

An unwanted product of the neutrino-producing leptonic meson decays is a large
muon flux. At the end of the decay volume there is an additional �370 m of iron
shielding and earth to stop these muons, and a defocusing magnet to bend away those
that remain before they reach the experimental hall. The magnet is a 10 m long toroid,
with an inner/outer diameter of 2/6 m, operating at a current of 3 kA for a maximum
field of 0.72 T

The total distance from the T9 target to the center of the NOMAD detector is
835.6 m; however, it is only 421.5 m from the end of the decay pipe to the detec-
tor. The neutrino beam Monte Carlo calculates the average neutrino path length to be
626.2 m. The calculated neutrino distributions at the detector are shown in Fig. 2.4
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Figure 2.2: Energy distribution of secondary mesons produced in the T9
target, as predicted by the (GEANT-based) NUBEAM Monte
Carlo program (version 5.02) using the FLUKA particle gener-
ator.

and listed in Tabs. 2.1, 2.3, and 2.2. The values from Tab. 2.3 are used for the data
normalization of Ch. 4.

The �� contamination in the neutrino beam has been calculated [117] to give � �
��� of the �� CC interaction rate in NOMAD. Given the sensitivity of the experiment,
this background is negligible.
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Neutrino Flux Fraction hEi Int. Frac. hEinti
Species (��� p.o.t.) (%) ( GeV) (%) ( GeV)
�� 125.20 91.75 23.6 91.28 45.5
�� 9.75 7.15 23.4 3.52 57.9
�e 1.17 0.86 37.2 1.34 59.5
�e 0.34 0.25 31.4 0.17 57.3

Total 136.47 100 23.7 100 46.6

Table 2.1: Neutrino flux at NOMAD, calculated by NUBEAM 5.02 with the
FLUKA ’92 generator. “Int. Frac.” is the fraction of interactions
coming from a certain neutrino type and Eint is the energy of
neutrinos that interact, assuming a cross section that scales with
energy, and also inserting a factor of 0.5 to account for the differ-
ence between � and � cross sections.

Parent �� �� �e �e
�� 91.50% — neg —
�� — 84.85% — neg
K� 8.36% — 65.8% —
K� — 12.41% — 26.0%
K�L 0.13% 1.62% 19.4% 71.4%
�� — 1.12% 14.8% —
�� neg — — 2.6%

Table 2.2: Contributions to neutrino fluxes at NOMAD from various parent
particles, as given by NUBEAM 5.02 with the FLUKA ’92 gen-
erator. Contributions of less than 0.01% are listed as negligible
(“neg”).
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Figure 2.3: Secondary meson fluxes at the entrance to the decay tunnel, as
predicted by NUBEAM 5.02.

Neutrino Relative hEi Int. Rel.
Species Flux ( GeV) Flux
�� �	 ��	
� �	� �	

�� ��	
� 	���� ��� �	"� �	
 ��	�� 	"�� ���
�e ��	��� 	���� ��� �
	"� �	� ��	�� 	
�� ���
�e ��	"�� 	���� ��� ��	�� 	� ��	
�� 	���� ���

Table 2.3: Neutrino flux at NOMAD, as predicted [116] by FLUKA ’95 and
the empirical parameterization. The errors reflect the difference
between the two methods. “Int. Rel. Flux.” is the relative flux of
interactions coming from a given neutrino type, assuming a cross
section that scales with energy, and also inserting a factor of 0.5
to account for the difference between � and � cross sections.
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Figure 2.4: Monte Carlo calculation of the NOMAD neutrino beam compo-
sition, as predicted by NUBEAM 5.02.
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2.2 NOMAD

2.2.1 Overview

The data used in this thesis was recorded by the NOMAD detector, shown in Fig. 2.5.
The detector is a multi-purpose neutrino detector which can be used to search for evi-
dence of neutrino oscillations through the reconstruction of kinematic event topologies.

Chambers
Muon

Beam
Active Target

(2.7 tons)

Preshower

Neutrino

Veto Planes

1 metre

Calorimeter
Hadronic

Electromagnetic
CalorimeterB = 0.4 T

Front
Calorimeter Modules

TRDDipole Magnet 

Drift Chambers Trigger Planes

Figure 2.5: Cutaway side view of the NOMAD detector.

Traditional neutrino detectors normally fall into one of two types. On the one hand
there are the bubble chambers and emulsion experiments. These detectors use either a
supercooled liquid or a photographic emulsion for both the neutrino target and the track-
ing medium. Events are then scanned visually offline. The advantage of this type of
detector is the excellent tracking, allowing precise momentum determination. The dis-
advantages are in the low event rate, the time-consuming analysis of the photographic
data, and the limitations of scale (at least with bubble chambers).

The other type of neutrino detector is a massive instrumented detector, typically a
scintillator-steel sandwich. This type of detector is simple and provides for a large fidu-
cial volume with a high neutrino event rate. Since it is instrumented with electronics,
most of the uninteresting events can be rejected on-line, making the data analysis sim-
pler. The biggest disadvantages are their poor momentum reconstruction of the events,
and their limited particle identification capabilities.

NOMAD has an unusual design in that it combines some of the best features from
both of these types of neutrino detectors. It is an electronic detector built with a low
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density target. This provides for on-line event discrimination while preserving good
resolution. The fiducial volume is a � � � � � m� space enclosed by a dipole magnet
for momentum determination. It is filled with drift chambers, which serve for both the
neutrino interaction target and the charged particle trackers. The entire target represents
2.7 tons with an average density of 0.1 g/m. The most common interaction nucleus in
the target is carbon, and so the neutron/proton ratio is very close to unity.

A coordinate system is chosen in NOMAD where the z direction is along the lon-
gitudinal axis of the detector in approximately the same direction as the neutrino beam
(left to right in Fig. 2.5). The �y vector points toward the sky, and the x axis completes
a right-handed coordinate system. Because of the geography of the SPS and the exper-
imental hall, the neutrino beam is not exactly aligned with the z axis. The T9 target is
slightly below the level of the detector, so the beam points upward (in the y–z plane)
with a 42.53 mrad tilt. The origin of the coordinate system is at the center of the front
face of the first (most upstream) drift chamber module.

2.2.2 Components

The main components of NOMAD are as follows:

 The Veto Planes are made of 59 plastic scintillators1 which provide full coverage
(26.3 m�) of the front (upstream) end of the detector. The veto is used to reject
events originating mainly from the muon contaminants in the neutrino beam. The
efficiency of the veto counters is %veto � 	�
� 	�.

 The Front Calorimeter (FCAL) is an instrumented iron/scintillator sandwich
calorimeter. Mainly used as an additional veto, at 17.7 tons it is also a prolific
source of neutrino interactions. While certain analyses can take advantage of
these events, they are not suitable for the type of low background analysis pre-
sented in this thesis.

 The Dipole Magnet is a large aluminum magnet surrounding the entire drift re-
gion. The entire magnet, along with the steel return yoke, has been recycled from
the UA1 [119] detector. It provides an average field of 0.4 T in the �x direction,
while drawing 5.7 kA of current. The aluminum coils weigh 20 tons and surround
a volume of �	�� �	�� 
	�m�.

 The Drift Chambers (DCs) provide both the tracking for charged particles and
the fiducial mass of the neutrino target. There are 44 DCs grouped into 11 mod-
ules of 4 DCs each. In addition, 5 DCs are placed in the TRD region for enhanced
tracking.

1The scintillators were recycled from the “nn�” experiment [118].
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Each DC contains 3 planes of sense (anode) wires, arranged at angles of ���, �,
and ��� with respect to the magnetic field. The sense wires are spaced at 6.4 cm
intervals, with one cathode wire in between each pair of sense wires. The tracking
medium is a 60-40 ethane-argon gas mixture. Each drift chamber represents only
0.02 radiation lengths (X�).

The sensitive region covered by the DCs extends from  � z � � cm and
jxj� jyj � �� cm. The momentum resolution of tracks is given by

�p

p
� 	�p

L
� 	�� pp

L�
� (2.1)

where p is measured in GeV/c and L is in meters, which is roughly 3.5% for
typical tracks of momentum p � � GeV/c.

 The Trigger Planes (T1 and T2) consist of strips of scintillator counters arranged
into planes before (T1) and after (T2) the TRD region. The planes are 286 cm
on a side, and they are separated by 161 cm, at z positions of 408 and 569 cm,
respectively. Events are accepted in NOMAD if they register hits in both T1 and
T2 and if the veto planes do not fire. The coincidence of these two counters pre-
vents noise in either bank from triggering an event; in addition, it serves to reject
most cosmic ray induced events, since only oblique rays could pass through both
counters. The Monte Carlo simulation of the detector gives the trigger efficien-
cies [120] for CC and NC events as 98% and 83%, respectively.

 The Transition Radiation Detector (TRD) [121] is located directly behind the
DC area, and between the trigger planes T1 and T2. It includes 9 transition
radiation modules and 5 DCs interspersed among them for tracking. Each TRD
module consists of a radiator followed by a plane of straw tubes. A radiator is
an array of 315 polypropylene foils spaced 250 �m apart and filled with nitrogen
gas. As charged particles pass the boundaries between foil and gas they radiate
energy proportionately to their Lorentz factor �. For a given momentum, a lighter
particle will emit more energy than a heavier particle as it passes through the
foils. The straw tubes collect and measure this energy. Each bank of straw tubes
has 176 tubes, and successive planes have their tubes staggered to cover the less
sensitive regions between individual tubes. The TRD is used mainly as a e/�
discriminator, and can reject pions at a level of �� while maintaining a 90%
electron acceptance.

 The Preshower (PRS) is made of three metal sheets stacked in front of two planes
of proportional tubes. The inner metal sheet is a 2 mm thick piece of aluminum,
and it is sandwiched between two 4.5 mm Pb-Sb (4% Sb by weight) sheets. To-
gether they represent 1.6 radiation lengths (X�), and only 0.05 interaction lengths
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($I). The energy from conversion photons is detected in the proportional tubes.
Since the tubes are arranged horizontally in one plane and vertically in the other,
some position information is retained. The preshower is also used as a e/� dis-
criminator, and it can reject pions at a level of �� with 90% electron acceptance.

 The Electromagnetic Calorimeter (ECAL) [122] is the last element that is still
inside the magnet. (See Fig. 2.5.) It is composed of 875 blocks of lead glass
arranged in a ����� block array. The front face of each block is 
	����	�cm�—
wider than it is tall. The blocks are 49.4 cm deep, which is ��	�X� and �	"$I. The
entire array weighs 20 tons. Cherenkov light emitted in particle showers within
the ECAL is collected and gives an overall resolution of

�E

E
� ��	�� 	��% �

��	��� 	
�%p
E

� (2.2)

where E is in GeV.

The glass blocks were calibrated in a test beam before installation. In situ, LEDs
attached to each block periodically check and update that calibration, to account
for degradation of the response with time. In addition, the effects of the magnetic
field are taken into consideration when converting the ADC signal from a lead
glass block into an energy.

 The Hadronic Calorimeter (HCAL) [123], which lies directly behind the mag-
net, is another iron/scintillator sampling calorimeter, like the FCAL. Since the to-
tal material upstream of the HCAL and downstream from the coordinate system
origin represents only �	�$I, the HCAL is necessary to fully contain the hadronic
energy in an event. This is extremely important in order to perform the kind of
kinematic discrimination used in many �� � �� oscillation analyses, including
this one. The HCAL is �	�$I deep, so together there is only about 0.5% proba-
bility that a hadron will pass through without showering. It thus serves to further
distinguish hadrons from muons. Since muons leave only a minimum ionizing
signal in the ECAL/HCAL system, a muon with momentum above 3 GeVshould
be able to penetrate through the calorimeters.

The position resolution of the HCAL is about 20 cm in both the x and y direc-
tions. The y resolution comes from the size of the scintillators used for instru-
mentation, the x resolution comes from the limit on the amount of light gathered,
i.e. on photon statistics. The energy resolution of the HCAL is:

�E

E
� �	�p

E
� (2.3)

where E is in GeV.
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 The Muon Chambers [124] are also recycled from the UA1 experiment. There
are five modules of two chambers each, making ten chambers in all. Each cham-
ber consists of four planes of drift tubes: two horizontal and two vertical. Three
modules are placed immediately behind the HCAL (station 1), and the remaining
two are placed behind an 80 cm thick iron absorber plate (station 2). A small gap
in the coverage of the chambers in station 1 was covered by two scintillators, col-
lectively called the muon veto, in late 1995. The geometry of the drift chambers
can be seen in Fig. 2.6.

Station 2

Iron Absorber

Module 1

Module 5

Module 2 Module 4

Module 3

Station 1

Figure 2.6: Schematic layout of the muon chambers in the NOMAD de-
tector. The left diagram shows the view from above, the right
shows a side view.

2.3 Data

The data analyzed in this thesis were gathered over a four year period, from 1995 to
1998. During each year’s run, the SPS produced a neutrino beam on the T9 beamline
from roughly April to October.

Though NOMAD was scheduled to begin taking data in 1994, a technical problem
with the drift chambers caused the detector to be non-operational that year. The faulty
chambers were replaced in three stages during the course of the 1995 run. At the
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Sample Protons on Reconstructed
T9 Target DST Events

1995 4 	�� ��� 95712
1995 8 	�� ��� 196989
1995 11 	�� ��� 220844

1996 �	�� ��� 846697
1997 �	"� ��� 1211845
1998 �	�� ��� 752840
Total �	�� ��� 3324927

Table 2.4: Total data collected by year in NOMAD. The trigger, the recon-
struction, and the three classes of 1995 data are described in the
text.

beginning of that year, between 9 May and 26 June 1995, only the four most upstream
modules were present. They covered the region in z from 0 to 110 cm. The next four
modules were placed directly behind the first four, �� � z � ��", and between 27
June and 15 August eight modules were operational. Finally, from 15 August until the
end of the 1995 run on 11 October, all 11 modules were in place. There are thus three
data samples from the 1995 run: 1995 4, 1995 8, and 1995 11, corresponding to the
number of DC modules installed during those periods.

No major detector difficulties plagued the 1996–1998 runs; however, in 1998, part
of the run was dedicated to a � mode. In this mode, the polarities of the WANF beam-
line magnets were reversed so that negative mesons would be preferentially focused.
This produced a beam of predominantly �� in the detector. This data sample is ex-
cluded from the analysis presented here.

Events were reconstructed offline and stored on data summary tapes (DSTs). Ver-
sion v7r3 of the DST [125] package produced the data used in this thesis. The statistics
for the collected data samples are presented in Tab. 2.4.

2.3.1 Event trigger

The online event trigger [120], as mentioned earlier, consists of the coincidence of the
scintillator counters T1 and T2 and the anti-coincidence of the veto planes in front of
the detector (V� T�� T�). Although other triggers were simultaneously operational,
only the data from this trigger were used in this analysis.

The rate for theV� T�� T� trigger was consistently around �	���� p.o.t. for the
1995–1998 runs. Of these, neutrino interactions in the DC fiducial volume accounted
for only 	����� p.o.t. with the rest being interactions in the magnet and other non-



2.3: DATA 49

instrumented parts of the detector (�	���� p.o.t.), straight-through muons that fail to
fire the veto counters (�	����� p.o.t.), and cosmic rays (�	���� p.o.t.).

2.3.2 Event reconstruction

Event reconstruction consists of the following steps: filtering, sub-detector reconstruc-
tion, and global fitting. The filtering step removes events with vertices outside the DC
fiducial volume and events with only one track.

Each sub-detector then reconstructs appropriate “objects”. For the PRS, TRD, and
muon chambers this involves converting hits into spatial points for global matching
later. The DC and ECAL reconstructions are discussed in separate sections.

2.3.2.1 Charged track reconstruction

Reconstruction of DC hits into track segments is performed in four distinct phases:

1. Triplet Identification: Triplets are sets of hits in the three planes (���� �����) of a
given drift chamber. Because of the stereo nature of the sense wires in a chamber,
left-right ambiguities can be resolved by a triplet, yielding a single (x,y) spatial
coordinate.

2. Helix Identification: Three triplets (in different chambers) are enough to define a
helix. The helix is then described by six parameters: a spatial point (x,y,z), two
angles and the sign of the curvature.

3. Triplet Collection: After a helix is defined, other DC hits are matched against the
projected helix to see if they also belong on it. If other triplets lie in a “road”
around the helix they are assigned to this track.

4. Track Fitting: Track parameters are then determined from the collection of hits.
Position, curvature (momentum), and direction may all be defined from the hits.
A Kalman filter is used do determine these parameters in an efficient manner.

The Kalman filter is a step-wise least-squares fitting procedure that avoids the need
for large matrix inversions inherent in global least-squares fits. It is especially useful in
track fitting in the presence of perturbations from, e.g., multiple Coulomb scattering.

Once all tracks are defined in an event, they are grouped around vertices. A vertex is
determined by minimizing a local #� over a sum of tracks in the vicinity. This process
is repeated over all local tracks, improving the vertex parameters at each step. This
iterative procedure obviates the need for precise initial vertex parameters.

The most upstream vertex is considered to be the neutrino interaction vertex. A
downstream vertex with a track leading into it is considered to be the result of a charged
particle interaction or decay. The tracks eminating from this vertex are not included in
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the determination of the total event energy, as their parent’s momentum has presumably
already been added.

A downstream vertex with no incoming track is considered to be a neutral particle
interaction or decay, and the tracks attached to this vertex are included in the event
total energy vector. A subclass of the neutral interactions is the V0, in which there are
exactly two tracks coming from a neutral vertex, and these have opposite charges.

2.3.2.2 Calorimeter clustering

Calorimeter clustering algorithms determine the size, position, and energy of the show-
ers initiated by particles interacting in the ECAL. The “Harvard” clustering algorithm
is used in this thesis, as described below.

After the ADC response of each lead glass block (a “cell”) in the ECAL has been
converted into an energy, a threshold of 10 MeV is applied to all cells. The clustering
algoithm then proceeds as follows:

 A seed cell is found in which the energy is above 30 MeV.

 Adjacent “lit” cells (with energy above 10 MeV) are added to the cluster if they
do not already belong to another cluster.

 The cluster grows until no more adjacent lit cells cells are found.

 The cluster centroid is determined from the center-of-gravity method, and the
radius is defined as the standard deviation of the distribution of cells.

2.3.2.3 Global fitting

After each subdetector has identified the relevant objects (track, hit, cluster, etc.) in an
event, a modified version of the Kalman filter is used to associate objects in different
detectors. The Kalman filter allows one to account for small-angle deviations in the
flight path of a particle from one subdetector to the next.

The filter begins with tracks in the DC, matching them to TRD and PRS hits,
to ECAL/HCAL clusters, and finally to muon chamber hits if possible. If there are
calorimeter clusters remaining after matching all the DC tracks, these unmatched clus-
ters are considered to come from neutral particles.

The event reconstruction may be summarized as follows. Charged particles leave
hits in the DC, which are reconstructed as tracks. The charges and momenta of the
particles are inferred from the curvature of these tracks. Neutral particles may leave no
trace in the drift chambers, but they deposit their energy in the ECAL and/or HCAL.
Because of the segmented nature of the ECAL, a particle shower may extend over
several blocks. Therefore, a clustering algorithm is used to identify individual showers
and separate them from neighboring ones. Tracks in the DC are then matched to clusters
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in the ECAL; in this way, clusters belonging to charged particles detected in the DC can
be separated from “neutral clusters.”

So, physical particles are reconstructed either as charged DC tracks or as neutral
calorimeter clusters or neutral vertices. In order to avoid clumsy notation, any such
reconstructed particle will be referred to as a particle object (PO) in later chapters.

2.4 Monte Carlo Data Simulation

Events in NOMAD are simulated through a series of three Monte Carlo programs. The
neutrino beam is modelled in the NUBEAM program, described in Sec. 2.1.

The spatial and energy distributions from NUBEAM are used by the next program,
NEGLIB [126], to generate neutrino interactions in the fiducial volume2 of the detec-
tor. NEGLIB simulates the Fermi motion of a nucleon and generates a deep inelastic
neutrino–nucleon scattering event through the LEPTO [127] package. LEPTO gener-
ates parton-level interactions using standard model electroweak cross sections with first
order QCD corrections. Hadronization of the partons is done via the Lund string model.

Final state particles are fed into the third Monte Carlo program, GENOM [128], an-
other GEANT-based package, to simulate their interactions with the detector. GENOM
simulates both the interactions (showers, decays) of the particles in the detector mate-
rial and the responses of the individual subdetectors. The GHEISHA [129] package is
used by GENOM to simulate interactions in the calorimeters, and FLUKA is used in
the tracking detector regions. The results are output in the same format as that used by
the real data.

After the event generation, triggering and reconstruction proceed exactly the same
as for the data. The Monte Carlo reconstructed events are also stored in the same DST
format (v7r3) as the data.

Table 2.5 lists the type and number of Monte Carlo events generated. For simplicity,
only �� NC Monte Carlo events were used in this analysis, and they were weighted to
account for all NC interactions (��NC, �e NC, �e NC). The differences (in energy and
vertex position) between the different NC interactions in NOMAD are small.

2The Monte Carlo samples used for the analysis in this thesis were generated in a fiducial volume of
jxj� jyj � �	
 cm, 
 � z � 	
� cm.
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Sample Reconstructed Monte Carlo /
DST Events Data (exp.)

�� CC 5032958 3.1
�� CC 588732 14.5
�e CC 2157453 92
�e CC 296974 105
�� NC 3067890 5.8

�� 1-prong 637808 —

Table 2.5: Total Monte Carlo events generated by the NOMAD collabora-
tion and used in this thesis. The third column shows the factor
by which the Monte Carlo exceeds the number expected in the
full data sample. The �� sample includes all non-leptonic � fi-
nal states with exactly one charged particle, of which the � � �

sample is about 50%.



Chapter 3

Analysis

This chapter presents the techniques used in the data analysis. The general approach is
similar to some other �� searches [99] in NOMAD, but the implementation is unique.

The general approach to searching for �� interactions in the NOMAD environment
is to identify the decay product(s) of the � lepton and then determine whether the kine-
matics of the event has charged current (CC) characteristics with the �-candidate as the
leading lepton. This analysis is concerned with the �� � ���� decay channel, so the
“visible” decay product is only the ��. The �� identification is detailed in Sec. 3.1.
Kinematic determination of the �� is outlined in Secs. 3.2 and 3.2.3.

This analysis was performed blindly on the data; that is, kinematic (cf. Sec. 3.2.3)
and event quality cuts (cf. Sec. 3.3) were tuned on data samples distinct from the one
used to search for a neutrino oscillation signal. This is a standard technique in NOMAD
to avoid introducing biases through the use of cuts designed to eliminate individual
events, e.g.

The entire analysis was performed on the data looking for a signal from events with
a �� as well as for events with a leading ��. The latter are expected to be entirely
from background, as the neutrino beam has only a small anti-neutrino component. The
efficiency of the analysis on the Monte Carlo was compared to the data using the ��

samples, and correction factors were derived from this comparison to account for sys-
tematic effects in the Monte Carlo (see Sec. 3.4). The signal efficiency and background
expectation for the �� analysis were derived from the Monte Carlo �� samples, cor-
rected by said factors. Only when a final set of cuts was determined from the ��

samples and the Monte Carlo �� was the �� data examined in the predefined signal
region, hereafter known as “the box”. The examination of the �� signal inside the box
is called “opening the box”. Chapter 4 presents the results from opening the box.

53
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�� n� ��p
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��
Figure 3.1: The ��–N CC interaction and subsequent �� � ���� decay

chain.

3.1 Rho Identification

Reconstructing � (770) mesons in NOMAD is a challenging task. The �� interaction
and �� � decay chain are shown in Fig. 3.1. The only particles which may be visible
in the detector are the �� and the photons. If both �’s are detected, their invariant mass
should be close to the �� mass. Adding the momenta of the photons together gives the
momentum of the �� from which they originated. The invariant mass of this new PO
and the �� should give the �� mass. The width of the �� mass peak is limited by the
resolution of the detector; the mass width of the � (770) is much larger (150 MeV/c�)
than the detector resolution. Nevertheless, both masses can be used to help identify the
��.

3.1.1 Photon identification

Since photons shower electromagnetically, their shower energy should be contained
within the ECAL. The other predominant neutral particles in NOMAD (neutrons and
K�L’s) have longer, hadronic showers. To a good approximation, then, any neutral ECAL
cluster with no corresponding HCAL energy can be identified as a photon.

It is not certain that a � produced at the interaction vertex will survive to the ECAL,
though. The DCs themselves represent around 0.9 radiation lengths, although the pho-
tons would only have to pass through a fraction of that depending on the position of the
neutrino interaction vertex. The TRD region contributes another 0.9X� of material, and
the probability of reconstructing the electron tracks decreases as one gets closer to the
back of this region. Altogether, about half of the photons produced in �� decay convert
in the detector.

The approach taken by this analysis is to begin as inclusively as possible in the
� identification, and use kinematic requirements to remove the backgrounds. Only
when it becomes apparent that the combinatorial backgrounds are drowning the signal
in a given class will that class be excluded. This also applies directly to the � and
�� identification. Table 3.1 lists all the reconstructed photon classes described in this
section.

Of the photons that convert, three classes of identification signals are defined. First,
if the tracks of the electron and positron are both reconstructed and if the invariant
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Class Name Description

1 ECAL No photon conversion,
cluster found in ECAL

2 V0 Photon converts to e�e� pair,
both tracks reconstructed

3 Hanger Photon converts to e�e� pair,
only one track reconstructed

4 PVTX Photon converts to e�e� pair
near primary vertex

Table 3.1: Reconstructed photon classes, further description given in text.

mass of the pair is less than 100 MeV/c� (see Fig. 3.2) then the PO formed by the sum
of the two tracks is called a V0, and because of the good resolution of the DC it should
represent well the �momentum. This is the clearest � conversion signal in the detector.

If one of the electrons has very low energy, its track’s radius of curvature may be too
small for the track reconstruction algorithm to identify cleanly. In this case, only one
of the conversion electrons will be found, and it should be separated by some distance
from the event vertex. These tracks are called “hangers”; for this analysis all hangers
separated from the event vertex by at least 15 cm in z and 5 cm in x and y are accepted
as � candidates. This imaginary box around the event vertex is called the “loose vertex”,
and will be referred to later.

The third conversion class includes photons which convert soon after production,
near the primary event vertex (PVTX). This class is expected to have the largest combi-
natorial background so a few loose cuts are applied to help reduce the obvious misiden-
tifications. All pairs of oppositely charged tracks are considered, and only those with
invariant mass less than 50 MeV/c� are kept (see Fig. 3.2). The point of closest contact
between the lines defined by the tracks’ starting points and their momenta must be less
than 1 cm. This is a somewhat complicated way of ensuring spatial proximity.

The third requirement for PVTX photons relies on the fact that the electron–positron
pair from a photon conversion will have no inherent opening angle. Initially, the elec-
tron and positron should be travelling in the same direction, and they are only separated
by the action of the magnet. Because of imperfect resolution/reconstruction, this sep-
aration might appear to give the electrons a small, but non-zero opening angle. Since
the magnetic field is in the x direction, any induced opening angle should be in the y–z
plane. The coplanarity C of two vectors �a and �b in the presence of a magnetic field �B
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Mass of V0s Mass of conversion pairs

Min. sep. of conv. pairs Coplanarity, conv. pairs
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Figure 3.2: Clockwise from top left: V0 invariant mass ( GeV/c�), PVTX
pair invariant mass ( GeV/c�), coplanarity for PVTX pairs, min-
imum separation for PVTX pairs (cm). Data taken from a sam-
ple of � MC events, and each plot includes both real photons
and the combinatorial backgrounds.

in the x direction is defined as:

C��a��bj�B � �x� � ��a� �b� � �y
j�ajj�bj

	 (3.1)

In NOMAD this reduces to the product sin& sin', where & is the opening angle of the
two tracks and ' is the angle between the plane defined by the two momentum vectors
and the y–z plane. As both angles tend to zero for photon conversions, C should be
very small; it is larger for most of the combinatorial background. jCj was required to be
less than 0.05 (cf. Fig. 3.2).

3.1.2 �
 identification

Once a collection of photons has been identified in an event, an attempt is made to
form a �� candidate from them. The simplest case would be to find two � candidates
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whose invariant mass lies close to the �� mass of 135 MeV/c�. Given the four classes
of photons defined above, there are ten categories of �� made up of pairs of �’s. In
principle, the resolutions may be different for each photon class, so the �� mass cuts
should be different for each of these ten classes. However, for simplicity, and in keeping
with the inclusive nature of the particle identification of this analysis, the mass range
was chosen uniformly to be [50,200] MeV/c�. This represents at least 2� on each side
of the centroid for each of the ten �� classes. Figure 3.3 shows the expected mass peaks
for four of the �� classes.

γ-γ πo Mass, τ→ρ

Area   234.7
Mean  0.1344
Sigma  0.1593E-01
ExpC0   5.399
ExpC1  -2.669

γ-Vo π
o Mass, τ→ρ

Area   100.0
Mean  0.1337
Sigma  0.2126E-01
ExpC0   4.519
ExpC1  -4.054

γ-hang πo Mass, τ→ρ

Area   45.69
Mean  0.1187
Sigma  0.1970E-01
ExpC0   4.389
ExpC1  -6.777

γ-conv πo Mass, τ→ρ

Area   17.59
Mean  0.1318
Sigma  0.2462E-01
ExpC0   2.642
ExpC1  0.9843
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Figure 3.3: �� invariant mass plots (in GeV/c�) from a sample of � � �

MC events, for various combinations of photons. Clockwise
from top left are shown: two neutral ECAL clusters, one ECAL
cluster and one V0, ECAL–PVTX conversion, and ECAL–
hanger.

Sometimes the two photons from �� decay are not resolved in the ECAL. If the
distance from the event vertex to the ECAL is too small, or the �� energy is too great,
the photons’ showers will overlap sufficiently in the ECAL that they will only be re-
constructed as a single cluster. In this case, the energy of the neutral PO will reflect
the �� energy, and the position of the cluster with respect to the PVTX will define its
direction. Since this approximates the �� energy and direction anyway, a single ECAL
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photon is also accepted as a �� candidate, though of course no �� mass cuts can be
made.

3.1.3 �� identification

Identifying �� in NOMAD is relatively straightforward. First, all negatively charged
tracks coming from near the primary vertex (specifically, from the loose vertex) are
considered. It is difficult to distinguish different hadrons efficiently in NOMAD, but
electrons and muons can be removed from this sample.

3.1.3.1 Electron rejection

Charged particles are assumed to be hadrons in NOMAD unless identified as electrons
or muons. Electrons have much lower masses than hadrons and so can be identified by
the TRD, and they shower electromagnetically so they can also be identified in the PRS
and ECAL.

In this analysis, electron identification is only necessary as a veto for the charged
pion identification. Since the inherent leading electron contamination is smaller than
the leading muon contamination (from �e and �� CC interactions, respectively) by
almost a factor of 100, the electron identification has a somewhat reduced importance.

For this analysis, a standard electron ID procedure was used that was found use-
ful [130] in one �� � �e oscillation search in NOMAD. The cuts are as follows, the
variables are defined afterwards:

 P � �	� GeV/c

 jPOECVXj� jPOECVYj � �� cm

 ECLUS � 	
� GeV

 PRSEV � PRSEH � � MIPs

 E�P
E�P

� �	�

 PICON � 	�

P is the track momentum measured in the DCs. POECVX and POECVY are the
x and y positions, respectively, of the intersection of the projected DC track with the
front face of the ECAL. This cut ensures that the particle should hit the ECAL within its
sensitive area. ECLUS is the ECAL cluster energy associated with the track. PRSEV
(PRSEH) is the energy deposited in the horizontal (vertical) tubes of the PRS, normal-
ized to the energy deposited by a minimum ionizing particle (MIP).

E is a modified ECAL cluster energy. If an electron undergoes Bremsstrahlung
radiation in the detector, photons will be emitted at tangents to the electron track. These
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photons will create clusters in the ECAL in a vertical strip above (below) the main
electron (positron) cluster. A simple algorithm adds the energy found in such a strip to
the cluster energy, ECLUS, to get a Bremsstrahlung-adjusted calorimeter energy, E.

PICON [131] is an acceptance variable based upon the response of the TRD. The
TRD was calibrated in a test beam prior to installation in NOMAD, and the detec-
tor response to electrons and pions was observed. The energy deposition distributions
can then be parameterized and probability distributions constructed. P�%ije� p� is the
probability that an electron of momentum p deposits an energy %i in TRD station i;
P�%ij�� p� is the corresponding probability for a pion. The log-likelihood ratio is de-
fined from these probabilities as:

LH �
nhitX
i��

log
P�%ije� p�

P�%ij�� p�
� (3.2)

where nhit is the number of TRD planes with energy deposited in them. Figure 3.4
shows the likelihood distributions for 10 GeV/c electrons and pions.

Figure 3.4: TRD log-likelihood distributions for 10 GeV/c electrons and pi-
ons. Figure taken from Ref. [131].

With a sample of likelihood distributions for particles at different energies, accep-
tance functions can be derived by integrating:

Aj �
�

Nj

Z
�

LH

dl
dNj

dl

				
p�nhit

� (3.3)
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where j � �e� ��, dNj

dl

			
p�nhit

is the likelihood distribution for particle j with momentum

p, andNj is the number of particles in each distribution. A��LH� � PICON is thus the
fraction of pions with likelihood ratios greater than LH.Ae is the equivalent acceptance
function for electrons, called ELACC. Figure 3.5 shows these functions.

Figure 3.5: The TRD acceptance functions PICON and ELACC, derived
by integrating the log-likelihood functions. Figure taken from
Ref. [131].

The functions PICON and ELACC are correlated. For a cut of PICON � 	�,
only 0.1% of pions should be accepted, and correspondingly, about 90% of electrons
are accepted. For an electron veto this is not a very stringent cut, but it is sufficient to
reduce the electron background while maintaining a high pion detection efficiency.

3.1.3.2 Muon rejection

Muons are the most abundant backgrounds to the �� in this analysis. If a leading ��

from a standard �� CC event is misidentified as a ��, and then combined with a �� in
the same event, that combination could look very much like the �� from the �� decay
in a �� CC event.

The muon chambers and both calorimeters are used to reject muons from the ��

sample. Since muons are minimum ionizing particles (MIPs), they tend to leave only a
small signal in the calorimeters relative to their momenta as measured in the DC. For
the same reason, they are highly penetrating, much more so than electrons and hadrons.

Once parameterized, one can project a DC track into the muon chamber stations.
Given the path length and detector geometry, one can also estimate the amount of mate-
rial a muon would travel on its way to the muon chambers. Taking Coulomb scattering
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into account yields a probability distribution for the position of a muon at the muon
chambers. The integral of this p.d.f. over the sensitive area of a drift chamber element
multiplied by the detector efficiency yields the probability to hit that element. The
probabilities to hit station 1, station 2 and the muon veto are, respectively, PROBHIT1,
PROBHIT2, and PROBHITV. These variables are calculated during the event recon-
struction.

Three related variables are the probabilities of the muon ranging out in the ma-
terial of the calorimeters and/or the iron absorber before reaching the muon stations,
given the muon momentum and assuming it is a MIP. For reaching station 1, station 2,
and the muon veto, the probabilities are PROBRCH1, PROBRCH2, and PROBRCHV,
respectively.

Thus, the probability of a given muon PO to leave a signal in the muon station 1
would be PROBRCH1 �PROBHIT1, for instance. The probability for a muon to fail to
leave a hit in any of the muon chamber elements would then be the productY

i�����V

��� PROBRCHi � PROBHITi�	 (3.4)

The probability of a muon to hit one of the muon chamber elements would just
be the complement of this, labelled MUHITPROB. In order to reject muons from the
pion sample, all pion candidates are required to have a high probability to hit the muon
chambers, MUHITPROB � ��%, combined with the lack of any hits in a circle of
40 cm around the projected track in any muon chamber elements.

The calorimeter information can be turned into a MIP likelihood by using the de-
tector responses, similarly to the way the PICON and ELACC functions were derived
from the TRD response (see Sec. 3.1.3.1). Both the ECAL and HCAL information is
used, if available. If there is a possibility of track overlap in either detector, or if no
energy is assigned to the track, then that calorimeter is not used in the likelihood. The
MIP likelihood probability, PROBMUCAL, is required to be less than 10% for pion
candidates in this analysis.

One further check is made on the projected track. Along with small perturbations
from normal Coulomb scattering, sometimes a muon deposits a large amount of energy
in one interaction, and its direction is changed at that point. In this case, a muon in
the DC might still leave hits in the muon chambers, but they would not line up with
the projected DC track. So, if a track segment (stub) can be defined from a series of
hits in the muon chambers, this stub is projected backwards towards the DC. If this
projection comes within 50 cm of the DC track (projected forward), the PO is rejected
as a “catastrophic energy loss muon” or simply “muon catastrophe”.

The muon veto requirements for the �� candidates are summarized as follows:

 MUHITPROB � ��%

 No hits in either muon station or in the muon veto scintillators
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 PROBMUCAL � �%

 Not a muon catastrophe

Notably, there is no explicit momentum requirement made of the pion candidate. The
MUHITPROB cut imposes an implicit lower threshold of about 3 GeV/c, though.

3.1.4 Rho isolation requirement

Once a collection of �� and �� candidates has been selected, combinations are added
to form �� candidates. A loose mass cut of " � M� � �� MeV/c� is applied to
these candidates. Of those that remain, a maximum of one per event is selected. This
is done by requiring the � PO to have the highest isolation variable, I, of any PO in the
event.

The isolation variable [132] is designed to select the PO with the momentum which
is most separate (isolated) from the others. In a CC event, this should ideally be the
leading lepton (or leading � decay product). For an event withN PO’s, the value of the
isolation variable for a PO j is:

I�j� � �

N

NX
i��

�
�pi � �P�

j �P�j

��

�
�

N� �

X
i��j

�
�pi � �Pj

j�Pjj

��

� (3.5)

where each PO i has momentum �pi, and

�P� �
NX
i��

�pi � �Pj �
X
i��j

�pi	

The cross product terms can be interpreted as the transverse momentum of some
PO with respect to a reference momentum vector listed in the denominator. For all the
PO’s in a given event, one can see that the first term in Eq. 3.5 is ordinarily a constant,
as is the ���N � �� factor of the second term. If we are only interested in finding the
PO with the maximum I in an event, then, we should only have to find the minimum of
the second sum.

In this analysis, however, the number of PO’s in an event can change depending on
how the � is defined. For instance, if one had an event with N PO’s initially, and then
one formed a �� from a �� and a single ECAL �, the effective number of PO’s would
be Neff � N � �. If the �� candidate comes from two photons, both of which convert
near the PVTX, then Neff � N � �. Both of these � candidates could be found in the
same event, so the full expression (Eq. 3.5) for I is necessary, taking into consideration
the number of PO’s in the event for each � candidate.

A successful � candidate must have the largest value of I for any PO in the event,
including other � PO’s.
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3.2 Leading Lepton Identification

Since the NOMAD detector is incapable1 of resolving the decay vertex of the � from
the ��–N interaction vertex, the � is identified by the kinematics of the event. Since a
� candidate may also originate from the hadronic shower of a NC or non-�� CC event,
one must show that the event comes from a CC interaction and that the identified � is
the leading lepton.

3.2.1 Neutral current and charged current events

The difference between NC and CC neutrino events is very simple: the outgoing lepton
in NC events (a neutrino) is not observed in the detector. The effect on the kinematics
of the event is best seen in the plane transverse to the beam axis. Since the baseline of
the experiment is so long, the neutrinos crossing the detector are essentially parallel 2

to each other. Therefore, the x–y plane of the detector is approximately3 transverse to
the beam.

In this plane the neutrinos have no momentum, so by momentum conservation the
vectorial sum of the momenta of the interaction products must be zero. This can be
seen in Fig. 3.6, in which three vectors and two angles are defined by illustration.

Figure 3.6a shows the momentum vectors of an ideal CC event in the transverse
plane. The lepton momentum is labelled��, and the particles in the hadron jet are shown
by the short lines with no arrows. Their vectorial sum forms the hadron vector, labelled
�h. The angle in the transverse plane between�� and �h is��h. Since the diagram assumes
an ideal detector, the sum of�� and �h is �.

In a real detector there is some mismeasurement (see Fig. 3.6b), and a new vector
�� P� is defined such that��� �h� �� P� � �. �� P� is called the missing momentum, since in

a CC event as the measurement errors vanish, so does �� P�. In a CC event, j �� P�j (�� P�)
should be small compared to the magnitudes of�� and �h (P� and Ph, respectively). The
angle between �� P� and �h is defined as �mh; this has no preferred value in a CC event.

An ideal NC event is diagrammed in Fig. 3.6c. Here, the outgoing neutrino (mo-
mentum marked by a dashed lined and labelled ��) escapes detection; only the hadron
vector is measured. Thus, the missing momentum in a NC event takes on the charac-
teristics of the lepton momentum of a CC event. The angle �mh is 180�, and ��h is
undefined.

1At the energies of the NOMAD neutrino beam, the � produced would travel on the order of 1.5 mm
before decaying. The resolution of the detector in the z direction is on the order of several cm.

2The mean beam divergence is calculated in the NUBEAM Monte Carlo program to be �1 mrad.
3There is a systematic angle in the neutrino beam of 42.5278 mrad in the y–z plane—the beam is

coming slightly up out of the ground—but this is accounted for in software and thus neglected in all
further discussions.
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Figure 3.6: Lepton (��), hadron jet (�h), and missing ( �� P�) momentum vectors
in the plane transverse to the neutrino beam for CC (a,b) and NC
(c,d) interactions. Diagrams a) and c) assume perfect detector
resolution, b) shows the effect of modest energy mismeasure-
ment, and d) shows a NC event analyzed as a CC event.

In order for a NC event to mimic a CC event, one or more particles in the hadron jet
must be assigned to the lepton vector; the remaining particles form the hadron vector.
This situation is illustrated in Fig. 3.6d, where the quotation marks are used to note that
neither�� nor �h represents the true lepton or hadron vector.

Comparing diagrams 3.6b and 3.6d, one can see several kinematic distinctions be-
tween CC and NC events. First, the missing momentum is generally larger in a NC than
in a CC event. The angle ��h peaks at 180� in CC events, but is smaller in NC. �mh

does the reverse: it peaks at 180� for NC, and has a flat distribution in CC.

It is common to show so-called �–� plots (��h vs. �mh) to illustrate these dif-
ferences. Figure 3.7 shows the differences between CC and NC events in this plane.

It was pointed out [133] that the angles ��h and �mh become undefined when the
relevant momenta defined in Fig. 3.6 tend toward zero. The solution presented was a
new set of variables based on the magnitudes of the momenta in the transverse plane.
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Figure 3.7: ��h vs. �mh for samples of CC (a) and NC (b) events from the
Monte Carlo. All angles are in degrees.

With M � P� � Ph� � P�, we have the three quantities:

�� �
P�

M

�h �
Ph

M
(3.6)

�m �
� P�

M
	

The data shown in Fig. 3.7 is replotted in a “�–�” plot (�h vs. ��) in Fig. 3.8.
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Figure 3.8: �h vs. �� for samples of CC (a) and NC (b) events from the
Monte Carlo.
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3.2.2 Separating �� events from charged current events

Once a particle or group of particles is identified as the � decay product(s), one must
show that these do not come from either a standard �� (or �e) CC event or from a NC
event.

The kinematics of �� CC (� � ���) events share elements of both �� CC and NC
events. Figure 3.9 shows a momentum vector diagram of a �� CC event with the � and
hadron vectors drawn exactly like those in the equivalent �� CC event of Fig. 3.6b. The
� vector is drawn with a dotted line, because it is not observed in the event. Instead, its
decay � and �� are shown, with only the � being detected. The �� momentum is added
vectorially to the missing momentum, and the new angles are labelled.

�h

��

���

��

�� P�

�h
�mh

Figure 3.9: Kinematic vector diagram of a ��CC (� � ���) event in the
transverse plane.

Since the � is unobserved, the � must take its place in the kinematics analysis. The
� has the best estimation of the � momentum, but because of the undetected �� it is
only a very rough approximation.

Comparing Fig. 3.9 with Figs. 3.6b,d illustrates the differences between � � �

events and standard �� CC and NC events. The missing momentum in �� � events is
larger than in �� CC, but smaller than in NC events. ��h for �� � events is larger than
it is in NC, but smaller than in CC. Likewise, �mh tends toward large angles in �� �,
unlike the flat CC distribution, but not as much as in NC events. Figure 3.10 shows
the �–� and �–� plots for � � � Monte Carlo events, which should be compared to
Figs. 3.7 and 3.8.
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Figure 3.10: a) ��h vs. �mh and b) �h vs. �� for a sample of Monte Carlo
�� � events.

3.2.3 Multidimensional likelihood analysis

The traditional method of selecting � � � events based on their kinematics involves
making cuts on a number of variables to increase the overall signal-to-background (S/B)
ratio. This can be a tedious procedure as the number of variables increases, and it does
not guarantee an optimal set of cuts. In many cases the variables are correlated, and the
region of optimal S/B may have a complicated shape, possibly even being composed of
more than one distinct phase-space volume.

An alternative, simplifying procedure is the construction of a likelihood measure.
In probability theory the likelihood, L�, for a set of measurements fxig taken from the
probability density functions fi�x� is just the joint probability density:

L� �
Y
i��

fi�xi�	 (3.7)

In the method of maximum liklihoods, the p.d.f.’s are taken to be a single, parameteri-
zable function f�x	 ���, with unknown parameters ��. Then, the optimal parameters are
found by solving the likelihood equation

� lnL�

��i
� 	 (3.8)

One could also define a confidence region in the parameter space defined by the ele-
ments �i, by making a threshold cut on the value of L�.

A similar method, directly based on the method of likelihoods, can be used to sepa-
rate signal from background in any multidimensional phase space as long as the signal



68 CHAPTER 3: ANALYSIS

and background p.d.f.’s are known. The new likelihood measure is

L�x� �
fS�x�

fB�x�
	 (3.9)

A threshold cut on L isolates regions of phase space with high S/B ratios, and effec-
tively turns the n-dimensional problem into a single dimensional one. Equivalently, one
could cut on the natural log ofL, lnL � ln fS�x��ln fB�x�, if that is easier to construct.

In practice, the p.d.f.’s for the signal and background are non-analytical. With a
Monte Carlo simulation of the populations, however, they can be modelled statistically.
This is the method [136] employed in this analysis. The phase space is binned and the
bins are filled with Monte Carlo simulated �� � events for the signal and non-�� CC
and NC events for the backgrounds. Each background contribution is weighted for the
relative abundance expected in the experiment. The signal and background arrays are
both normalized to one event per bin. L thus becomes a discrete function, with a single
averaged value in each bin.

The likelihood functions are relied on heavily in this analysis. After loose � identi-
fication cuts and event quality cuts, the last cut is on the likelihood variable. This cut is
reserved for most of the signal discrimination.

3.2.3.1 Defining the signal “box”

At the beginning of this chapter it was noted that this analysis was performed blindly,
and that a region of phase space was predefined as the signal “box”. This box is pre-
scribed by the likelihood measure lnL. Since the signal-to-background ratio is larger
than unity for positive log-likelihood values, these events could be described as signal-
like while events with lnL �  could be called background-like. The signal box for
this analysis includes all signal-like events, lnL � .

Seven bins were defined in this signal region, in order to take advantage of our
knowledge of the lnL distribution. The size of the bins was chosen to balance the
desire for fine bin granularity against the need for sufficient signal statistics in each bin.
The bins were defined at half-integer intervals from  � lnL � �, with the seventh
bin including all events with lnL � �. Each bin includes several hundred Monte Carlo
signal events so the statistical error in each bin is small.

The cuts described in this chapter were tuned using the Monte Carlo � � �� sam-
ple, the Monte Carlo background samples searching for both �� and ��, the �� sample
in the data, and the data events with a �� and lnL �  only. Only when the cuts were
finalized on these samples “outside the box” was the box opened. Chapter 4 presents
the results when the cuts in this chapter are applied to those data events with a negative
� and lnL � .
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3.2.3.2 Likelihood array smoothing

The statistical precision with which the p.d.f.’s can be known is limited by the number
of Monte Carlo events available. If the density of events is sufficiently high throughout
phase space, one can simply take the number of events in each bin as an approximation
of the function in that bin. If the number of events is low and/or there are large regions
of phase space with few events, another method is needed.

The technique [136] used in this thesis is to smooth the distributions by calculating
a local event density for each bin. To get the local event density for a bin one counts the
events in ever-expanding hyperspheres around the given bin until the number of events
enclosed by the sphere is above some threshold4. The density is the number of events
enclosed divided by the volume of the hypersphere. This is repeated for each bin, and
the resulting distribution is called the smoothed likelihood.

For distributions in which the density of events is high, such that the number of
events in each bin is larger than the threshold, this procedure reduces to counting the
number of events in each bin as desired. Its real power is in smoothing sparsely popu-
lated distributions, for which purpose it was chosen.

3.2.3.3 Parameterizing events in NOMAD

The kinematics of any event in NOMAD can be completely described by a suitable
choice of five independent variables. The lepton and hadron momentum vectors con-
tain all the kinematic information that is available in an event, and they can each be
described by three components (px, py, and pz, for example). One of these six degrees
of freedom is lost, however, through the azimuthal rotational symmetry of the neutrino
beam, and we are left with only five: three transverse variables and two longitudinal
ones.

Any five suitably independent variables can be chosen to span the space. In this
analysis the following five are chosen: the inelasticity y, Q�, transverse mass M�, ��,
and ��. They are each described below. Although there is some correlation between
these variables, they are sufficiently independent to span the available space. y andQ�

are the predominantly longitudinal variables, andM�, ��, and �� are the transverse ones.
The inelasticity is just the fraction of the incident neutrino’s energy imparted to

the hadron vector. In NOMAD, this is defined as the ratio of the hadron jet energy to
the total observed energy in the event (hadron plus lepton). In a CC event in which
the outgoing lepton is observed, the total energy in the event is equal to the incident
neutrino energy and the formula representrs the true inelasticity. In a NC event the
outgoing lepton escapes undetected, so the total event energy is only the energy of the
hadron jet. y is still calculated in NC events, but it does not correspond to the true
inelasticity.

4The threshold used in this analysis was 16 events, for a statistical precision of 25%.
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Q� [134] is the transverse momentum of the chosen lepton with respect to the total
event momentum vector in three-space. It is defined by

Q�
� � P�� �

�
�P� � �Ptot

Ptot

��

� (3.10)

where the momenta �P� and �Ptot are the three-space5 momentum vectors for the lepton
and for the total energy (lepton + hadron jet) in the event, respectively. Q� is bound
by zero at its lower end, but it is unbounded on the upper end. In constructing bins for
Q�, then, the highest bin has no upper bound.

M� is the transverse mass for an event, defined by

M�
� � �P� � Pm�

� � ��P� � �Pm�
�

� �P� � Pm�
� � P�h

� ��P�Pm � �P� � �Pm�

� �P�Pm sin����h � �mh�� (3.11)

where all vectors are defined in the beam transverse plane. M� is a measure of the
invariant mass of the lepton–missing-momentum system, the system recoiling against
the hadron jet. In a �� CC event, the missing momentum will largely belong to the
escaping ��, the daughter of the �. Thus, if the � momentum were entirely in the
transverse plane,M� would represent the � mass; instead, it has an upper bound at the
mass of the �.

�� and �� [135] are constructed from the variables ��, �h, and �m, introduced in
Sec. 3.2.1. They convey the same transverse information as those former variables, but
�� and �� are constructed to cover a rectangular region instead of a triangular one, and
this makes the multidimensional binning easier. The definitions of �� and �� are:

�� � �� ��h (3.12)

�� �
�� � �m

�h
	 (3.13)

�� takes on values from 0 to 1, and �� covers [-1,1].
Each variable is broken into 16 bins, for a total of 1,048,576 bins. The bin sizes

were made variable so that the number of signal events in each bin would be more
uniform across each variable. Table 3.2 shows the values of the low edges of each bin.
With only a small number of events to populate the bins, such that smoothing across
several bins is necessary, the results are not very sensitive to the precise locations of the
bin boundaries.

5Note the difference from the definitions in Sec. 3.2.1, whereP� referred to the transverse momentum.
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Bin y Q� M� �� ��

1 0.0000 0.00 0.00 0.000 -1.00
2 0.0625 0.75 0.50 0.005 -0.99
3 0.1250 1.25 1.00 0.020 -0.95
4 0.1875 1.50 1.25 0.050 -0.90
5 0.2500 1.75 1.50 0.100 -0.80
6 0.3125 2.00 1.75 0.175 -0.60
7 0.3750 2.25 2.00 0.250 -0.40
8 0.4375 2.50 2.25 0.325 -0.20
9 0.5000 2.75 2.50 0.400 0.00

10 0.5625 3.00 3.00 0.475 0.20
11 0.6250 3.50 3.50 0.550 0.40
12 0.6875 4.00 4.00 0.625 0.60
13 0.7500 4.50 4.50 0.700 0.80
14 0.8125 5.50 5.50 0.775 0.90
15 0.8750 7.00 7.00 0.850 0.95
16 0.9375 10.00 10.00 0.925 0.99

Table 3.2: Bin definitions (low edges are displayed) for the likelihood array.



72 CHAPTER 3: ANALYSIS

Sample Odd Array Even Array

�� � 6104 6130
�� NC 902 857
�� CC 89 81
�� CC 13 9
�e CC 149 156
�e CC 80 73

Table 3.3: Numbers of entries from each category of Monte Carlo event in
the likelihood arrays.

The signal array is easy to construct. After selecting �� candidates and applying the
event quality cuts (cf. Sec. 3.3), all surviving events are entered into their appropriate
bins and the array is smoothed à la Sec. 3.2.3.2.

The background array requires more care since there are several types of back-
grounds that need to be combined. After event cuts and selecting �� candidates, events
are entered into bins with weights according to their event type. The weights can be
read from the third column of Tab. 2.5. The array is then renormalized, such that the
contents of the bin with the smallest non-zero entry is equal to 1, and smoothed as in
the signal case.

In order to avoid overlap between the events used to construct the likelihood func-
tions and the events analyzed by them, all Monte Carlo events were separated into two
groups. The events from each group were used to construct separate likelihood func-
tions, and these functions were used to measure the opposite group. Since the groups
were arbitrary, the parity of the event number was used to classify events. Thus, the
odd numbered � � � events went into the formation of the “odd” signal array, the
even events defined the “even” signal array, and likewise for the background arrays.
Then, during the final analysis, even events were compared with the odd signal and
background functions to get a likelihood measure, and vice versa for the odd events.
Table 3.3 shows the number of entries by Monte Carlo type in each of the four likeli-
hood arrays (signal and background, odd and even).

3.3 Event Quality Cuts

Because this � � � analysis relies so heavily on kinematics, proper event reconstruc-
tion is paramount. Therefore, events with any signs of poor reconstruction are vetoed
immediately. In addition, most �� and �e CC events can be rejected by identifying the
leading lepton. This section details the cuts used to remove such unwanted events.
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3.3.1 Reconstruction checks

Low energy charged particles tend to spiral in on themselves in the field of the magnet,
leaving a pattern of hits that the track reconstruction algorithm often mishandles. Such
POs often appear with inaccurate momentum information and only few hits; however,
this does not reflect any gross reconstruction breakdown. Because the error on the
total event energy introduced by these low energy tracks is small, such tracks can be
neglected without much loss of kinematic information. Therefore, tracks with less than
10 DC hits are “locked out”, meaning that they are not considered in any further part of
the analysis for that event6. In addition, tracks with less than 12 hits are locked if they
have a momentum p � � GeV and a track fit #� per degree of freedom of more than 5.

Other track reconstruction problems can lead to more serious kinematic errors in an
event. If the uncertainties obtained by the track fitting procedure are large (� � GeV/c
in momentum,� 	� GeV/c in transverse momentum, or #��d	o	f	 � �) for any track
in an event, that event is vetoed. Likewise, if the total number of DC hits that are not
assigned to any tracks is large (�500), this also suggests poor reconstruction and the
event is rejected.

The position of the primary neutrino–nucleon interaction vertex determines the mo-
mentum directions for all of the neutral POs in an event. If it is mismeasured, or if the
wrong vertex is chosen as the primary one, then the energy vectors could be badly in
error. With this in mind, the primary vertex is required to contain at least two tracks,
and the sum of the charges of the tracks in the PVTX is required to lie within one unit
of electric charge from zero. In a CC event, the total charge should be zero, whereas
in a NC the charge could be zero or one depending on whether the struck nucleon is a
proton or neutron.

The PVTX can also provide a way to remove events originating outside the detector.
Neutrino interactions in the material surrounding the DCs can generate particles which
stray into the fiducial volume, triggering the V� T�� T� trigger. These events will
appear to originate on one of the boundaries of the detector. Of particular concern is
the magnet and iron return yoke surrounding the sides of the target, and the FCAL
in front of the DCs. So, the position of the PVTX is required to lie in the range [-
130,130] cm in x, [-125,135] in y, and [5,403] in z. This provides at least a 15 cm
cushion around the sides of the DC area, and 5 cm regions at the front and back. The
asymmetry in y is to account for the neutrino beam tilt (cf. Sec. 2.2.1).

Finally, POs can pass through the ECAL from sources outside the event. Since the
calorimeter includes timing information, though, the vast majority of such occurrances
can be identified by rejecting events with ECAL energy outside the event timing win-
dow. If the total out-of-time energy in the ECAL is greater than 100 MeV the event is
vetoed.

6POs that are locked in an event do not contribute to any of the kinematic sums, for instance.
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3.3.2 Electron veto

Though not as prevalent as �� CC, �e CC events pose a significant potential background
to this analysis. The �� daughter of the �� is required to pass electron veto cuts (cf.
Sec. 3.1.3.1), but a leading electron may exist elsewhere in an event.

Primary electron identification is done through the ECAL/TRD/PRS subdetectors.
If an electron travelled on a trajectory such that it missed them, it would not be identified
as an electron. In order to ensure that leading electrons do hit them, therefore, any
track with a transverse momentum � 	� GeV/c is required to project into the fiducial
volume of the ECAL. If any track in an event fails this requirement, it could be a leading
electron, so the event is discarded.

Leading electrons are recognized through a combination of kinematics and particle
identification. For the particle identification, two electron definitions are used: tight
and loose. The tight definition is the standard definition used in Sec. 3.1.3.1. Since the
non-electron contamination should be less than 0.1% in this sample, it is safe to add the
Bremsstrahlung strip energy to the momenta of POs satisfying this definition.

Tracks in the loose vertex are identified as loose electrons if they have any “daugh-
ter” tracks that are identified as electrons. A daughter track is one whose starting point
matches with the endpoint of its parent track. The track from a charged particle which
undergoes an interaction in the detector may have several daughter tracks, for example.
The helix of an electron which emits a Bremsstrahlung photon will have a discontinu-
ity, and it may be reconstructed as two separate POs. Only the “daughter” PO will have
any TRD/PRS/ECAL information, though, and the loose electron definition is designed
to catch such a case.

Loose vertex tracks will also satisfy the loose electron requirements if any two of
the following three hold:

 The TRD variable ELACC � 	��

 The PRS energies PRSEV � PRSEH � � MIPs

 E�P
E�P

� �	�

See Sec. 3.1.3.1 for the variable definitions. If either of the first two conditions hold,
but not the third, then the Bremsstrahlung strip energy is temporarily added to the PO
and the third condition is retested.

Since POs passing the loose electron cuts may have higher pion contaminations, the
Bremsstrahlung strip energy is not added to their track momenta in the leading particle
determination, discussed next.

A PO is considered a possible leading particle for the purpose of electron rejection
if it has a transverse momentum P��0.8 GeV/c, or if it has the highest value of any of
the following quantities in an event: momentum p, transverse momentum P�, isolation
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I (cf. Sec. 3.1.4), Q�(Sec. 3.2.3.3), or Q�. Q� is defined similarly to Q�; it is the
transverse momentum of the lepton with respect to the hadron vector:

Q�
� � P�� �

�
�P� � �Ph
Ph

��

	 (3.14)

As there are may be several POs in an event which satisfy different criteria above, there
may be more than one “leading particle”7 found in an event.

If any charged track in an event satisfies either of the electron definitions and also
satisfies any of the kinematic requirements, it is considered a leading electron and the
event is vetoed.

3.3.3 Muon veto

Whereas electrons are commonly found in the hadron jet of an event, most muons
are the leading leptons from �� (or ��) CC events. Since the �� background is also
potentially much larger than the �e background, any event with a muon candidate in it
is rejected for this �� � analysis regardless of the event kinematics.

A charged track is a muon candidate if any of the following apply:

 the reconstruction package matches the DC track with a muon chamber track
segment (phase II muon),

 the track has a single daughter which matches to a muon chamber track segment,

 the projected DC track comes within 40 cm of hits in x and y planes of muon
chambers in station 1, or within 50 cm in station 2 (loose muon),

 the track is a muon catastrophe.

Most of these are similar to the cuts made in Sec. 3.1.3.2.
In addition, any event with a “shadow muon” is also rejected. A shadow muon is a

muon which presumedly comes from the interior of the detector, but for which there is
no corresponding DC track. This may happen in, e.g, a high multiplicity event in which
the muon DC track is not reconstructed properly. The hits in the muon chambers may
form a track segment with direction information. A shadow muon is a muon chamber
track segment which projects back into the DC region.

Along with the neutrinos in the beam, many accompanying muons pass straight
through the NOMAD detector. These are called halo muons, and their presence should
not cause an event to be vetoed. This is actualized by requiring a shadow muon track

7This definition of a leading particle is only used in the electron veto. It is different from that used in
the �� � search.
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segment to lie within a box defined by jxj� jyj � �� cm at the muon chambers, or to
project backwards to inside a box of jxj� jyj � � cm at z � . Halo muons will
generally begin outside the box at z �  and travel along the beam direction. Halo
muons inside the box at z �  will hit the veto planes in front of the detector, and the
event will not be triggered byV� T�� T�.

3.4 Monte Carlo Systematic Effects

The oscillation probability derived from this analysis is dependent on the signal and
background efficiencies. These are measured by the Monte Carlo, so the accuracy of
the efficiencies is directly dependent on the degree to which the Monte Carlo reflects
the data. Controlling systematic errors in the Monte Carlo is therefore an important
task.

The greatest uncertainty in the Monte Carlo description of the ��N interaction is in
the nuclear fragmentation, which gives rise to the hadron jet. Thus, signals which rely
on a detailed description of the hadronic part of events will suffer most from inaccurate
representations in the Monte Carlo. The most obvious of these is the NC background, in
which the entire visible energy comes from nuclear fragmentation. The �� � signal is
less affected since it relies only on the total hadronic momentum vector, which is deter-
mined by kinematics, and not on a detailed description of the jet. CC backgrounds fall
somewhere in the middle, relying on hadronic particles to form the �� but sometimes
incorporating the leading lepton into the “��”.

3.4.1 Data simulator

In order to minimize the systematic errors introduced by the Monte Carlo, a data sim-
ulator approach is used in this analysis. Kinematically, a �� CC event is very similar
to a NC or a �� CC event. The main difference is the identity of the leading lepton.
The data simulator uses this similarity to derive samples of “fake NC” and “� signal”
directly from the �� data themselves. No such technique exists to minimize the sys-
tematic error for the CC backgrounds.

The procedure for generating fake NC events is as follows. Reconstructed events
are accepted for the simulator if they have one and only one ��. In order to avoid
identification errors of either kind, the muon is required to pass a tight set of cuts, and no
other track (of either charge) in the event is allowed to pass even loose muon cuts. This
muon is removed from the event, and analysis proceeds as normal. The only difference
for the data simulator analysis is that the event muon veto cuts of Sec. 3.3.3 are not
applied, as these would be mutually exclusive with the data simulator requirements.
Removing the leading �� simulates the behavior of the undetected � in a NC event.

A PO passes the tight muon cuts if it has a momentum of more then 2.5 GeV/c, and
its projected track matches to a track segment in either station of the muon chambers.
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A match in station 1 is defined as a spatial proximity of � � cm and a #� for the track
match of �20 (for 4 degrees of freedom). A PO will pass the loose muon cuts if it
is matched to hits in both planes of either muon station or in the muon veto, or if it
satisfies the muon catastrophic energy loss test described in Sec. 3.1.3.2.

The procedure for generating �� simulated events is the same until the last step. In-
stead of simply removing the found muon in an event, its momentum vector is used to
construct a � PO. The momentum is rescaled [137] to account for the expected differ-
ence in the energy spectra between �� CC and �� CC events due to the difference in the
lepton masses. The � � � decay chain is simulated, and only the final state particles
(����) are kept. Their momenta are smeared to account for the detector resolution, and
they are placed in the list of reconstructed POs in the event. The function used to smear
the momentum of charged tracks is the measured DC resolution (Eq. 2.1). Photons are
smeared by an amount

�E

E
� ��	�� 	��%	 (3.15)

The advantage of the data simulator procedure is that it allows one to estimate the
systematic differences between the data and Monte Carlo. The same procedure can be
performed on both real data and on �� CC Monte Carlo events. For Nsim

data simulated
events from the data andNsim

MC simulated events in the Monte Carlo, ifNsel
data andNsel

MC

events are selected by the analysis, the data simulator efficiencies are

%dataDS �
Ndata

sel

Ndata
sim

(3.16)

%MC
DS �

NMC
sel

NMC
sim

	 (3.17)

If the same analysis produces an efficiency in the regular (not data simulated) Monte
Carlo of %MC

sig for the �� � signal and %MC
bak for the NC background, then the expected

efficiencies for the data are:

%datasig � %MC
sig

�
%dataDS

%MC
DS

�
���

(3.18)

%databak � %MC
bak

�
%dataDS

%MC
DS

�
fakeNC

	 (3.19)

For ease of notation, let the ratios of efficiencies in Eqs. 3.18 and 3.19 be represented
by

fDSi �
�
%dataDS

%MC
DS

�
i

� i � sig� bak	 (3.20)
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�� � Simulator Fake NC Simulator
Sample Data MC Data MC

DST Events 3324927 5032958 3324927 5032958
Simulated

Events 899252 2978242 1002656 3216394

�� �

Candidates 76738 487910 19 10

lnL � 	 19848 126126 10 7
lnL � 	 56890 361784 9 3

	 � lnL � 	� 5541 34895 4 1
	� � lnL � �	 7060 45401 0 0
�	 � lnL � �	� 7911 50177 2 0
�	� � lnL � �	 8288 52466 0 1
�	 � lnL � �	� 8240 53752 2 0
�	� � lnL � �	 7950 50986 0 0

lnL � �	 11872 74107 1 1

Table 3.4: Number of events in the signal (� � ��) and background (fake
NC) data simulators in bins of the likelihood variable lnL.

Table 3.4 shows the number of events in the signal and background data simulators
for data and Monte Carlo in bins of the likelihood variable lnL. The background (fake
NC) bins contain the sum of the events in which a �� is found and the events in which
an equivalent �� is found. (See Sec. 3.4.2 and appendix A.)

fDSsig is calculated for each bin and reported in Tab. 3.5. The errors are the Poisson
errors for the number of events observed.

From Tab. 3.4 it is evident that the number of surviving events in the fake NC data
simulator is insufficient to calculate a statistically meaningful value of fiDS separately
for each likelihood bin. One simple approach is to set the value for each bin equal to
the average over the whole likelihood region lnL � 	. This yields

fbakDS �
����"�"

�����"���
� �	"�������	� (3.21)

where the errors are statistical only, and derive from the 34% confidence regions on
each side of the Poisson-distributed numbers of events.

Another approach is to fit the data to a simple function in each of the likelihood
bins defined in Tab. 3.4 for lnL � . Since there are very few entries in each bin, a
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Sample fDSsig

�� �

Candidates 	���� 	��
lnL � 	 	����� 	�
lnL � 	 	���� 	��

	 � lnL � 	� 	����� 	
"
	� � lnL � �	 	���� 	""
�	 � lnL � �	� 	����� 	"�
�	� � lnL � �	 	����� 	"�
�	 � lnL � �	� 	�

� 	"
�	� � lnL � �	 	��"�� 	"�

lnL � �	 	��"� 	��

Table 3.5: Ratio of data to Monte Carlo efficiencies for the signal data sim-
ulator.

maximum-likelihood fit is performed, where the function to be minimized is [138]:

#� � �
X
i

��
Nfit

i �NMC
i

�
�NMC

i ln

�
NMC

i

Nfit
i

�
�

�
f�i�Nfit

i �Ndata
i

�
�Ndata

i ln

�
Ndata

i

f�i�Nfit
i

�
	 (3.22)

The sum is over the 7 bins in the fit, Ndata
i andNMC

i are the numbers of entries in bin i
for the data and MC data simulators, and Nfit

i and f�i� are fit parameters. f�i� is taken
to be a polynomial acting on the low edge of each bin; for example, f(1) corresponds
to a polynomial evaluated at the point x � , f(2) is the value of the same polynomial
evaluated at x � 	�, etc. For Poisson distributed data the #� function of Eq. 3.22
behaves asymptotically like the classical #� in a least-squares fit for the purposes of
interval estimation and goodness-of-fit.

The function minimization is done with the MINUIT [139] package (release 96.03).
MINUIT uses a variable-metric method with numerically determined first- and second-
derivatives to minimize the #� function. The errors on the best-fit parameters are deter-
mined by following the #� function from its minimum to #�min � �. This prescription
defines a surface in the n-dimensional parameter space, and only the endpoints of the
projection of this surface onto a single parameter axis are reported for each parameter.
For uncorrolated parameters this gives the correct error, and it overestimates the error
otherwise.

For 7 likelihood bins there are 14 independent measurements and ��O free param-
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eters, where O is the order of the fitted polynomial. The background data simulator is
fitted to polynomials of order 0, 1, and 2, yielding

fbakDS � �	�� �	� � #��d	o	f	 � �	���" (3.23)

fbakDS � ��	���������� � ���	��������	�x � #��d	o	f	 � �	���� (3.24)

fbakDS � ��	��	������� � ���	����	�	���x� ��	� �	��x�� #��d	o	f	 � �	"��� (3.25)

where x is the low edge of the given likelihood bin.
The values are all in agreement with the average calculated earlier, which is not

surprising given the large errors. However, the precision of both estimates is insufficient
for the purpose of controlling systematics. Because of this, the NC data simulator is
not used to estimate fbakDS in this analysis. Instead, the �� data is used, as explained in
the next section.

3.4.2 �� analysis

Another way to estimate the systematic behavior of the Monte Carlo for the NC back-
grounds is to compare the predictions for �� to the data. There is no danger of looking
inside the box prematurely because the �� and �� data samples are distinct. Even if the
same event yields both types of candidates, the event kinematics will be different for
each choice of �, and so the likelihood measure will be different.

The �� analysis procedes exactly the same as the �� analysis, except that the sign
of the charge of the selected � is reversed. All other cuts are the same. Since any
�� component in the beam (from �� � �� oscillation) should be smaller than the ��
component by an order of magnitude, the �� sample should be entirely background.

It is assumed that the systematic errors are similar for all of the CC types. This way
the four CC types may be combined to improve the statistics. It is hypothesized that the
primary background to the �� signal from CC events comes when a �� is selected in
the hadronic jet. Since this depends on the nuclear fragmentation, and not the lepton, it
should be similar for all incident neutrino types.

In addition, if the CC backgrounds come from the hadron jet, the data/Monte Carlo
differences should be equivalent for �� and ��. Thus, the measured difference in the
�� data should accurately reflect the difference in the �� data. The results are presented
in Ch. 4.



Chapter 4

Results and Conclusions

This chapter presents the results from the analysis described in Ch. 3. The signal and
background efficiencies are presented, and a limit on the oscillation probability is ob-
tained. Finally, this result is compared with other imits obtained in NOMAD.

4.1 Signal Events and Efficiency

In this sction, the signal efficiency is calculated. This is the probability of this analysis
algorithm to select an event given that the event contains a genuine �� CC interaction.

Although this analysis is looking for the combination of particles which form the
�� from a �� decay, the same set of cuts may also select events from other �� decay
channels. Since the different events are indistinguishable in this analysis, all modes
contribute to the “signal” efficiency. For example, in a �� interaction event in which the
lepton undergoes the decay �� ��������, some set of PO’s may collectively satisfy
the � identification requirements of this analysis. If one or more of the �-daughter pions
are included in this “�”, the event also has a good chance of satisfying the kinematic
selections.

The fraction of all �� CC events identified by this analysis is thus:

%sig �
X
i

%i � Bri� (4.1)

where i refers to the � decay channels, %i is the efficiency of this analysis on events from
the ith channel, and Bri is the branching fraction of decay channel i. In Monte Carlo
samples of 3000 �� � ���� events and 269975 �� � e��� events, no � candidates
were found, so these channels are dropped from the sum.

The other�� CC Monte Carlo event samples generated by the collaboration were the
1-prong and 3-prong hadronic decay channels. In addition, a small sample of inclusive
�� CC events was also generated to be used as a cross check. Table 4.1 lists the number

81
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of events in each of these three samples in bins of the likelihood variable lnL. (Recall
that the signal box for this analysis includes all bins with lnL � .)

The relevant quantity for the signal efficiency is %� Br, according to Eq. 4.1. The
branching fraction [28] for the � 1-prong hadronic decays is ���	�� � 	�"�%, and
the branching fraction for the 3-prong modes is ���	�� � 	���%. Table 4.2 lists the
net efficiencies for the 1-prong and 3-prong hadronic decays modes, and their sum.
The sums may be compared with the “Inclusive” efficiency from Tab. 4.1, since the
branching fraction in this channel is unity by definition. Finally, Tab. 4.3 shows the net
�� efficiency (from Tab. 4.2) corrected for the data/Monte Carlo biases (cf. Tab. 3.5).

4.2 Background Contamination

Similarly to the signal efficiency, one must know the number of expected background
contamination events in order to calculate an oscillation probability. A background
contamination event is a non-��-CC event in which all the signal requirements from
Ch. 3 are nonetheless satisfied.

There are five types of backgrounds important to this study (�� CC, �� CC, �e
CC, �e CC, and NC), and each type is analyzed separately. The number of expected
contamination events in likelihood bin i from background type � can be written

N
exp
i�� �

NMC
i��

F�
fDS
� (4.2)

whereNMC
i�� is the number of contamination events surviving in bin i of a Monte Carlo

sample with NMC
tot�� �-type events, F� is a normalization constant, and fDS

� is the data
simulator correction factor for background �.

The normalization factor is just the factor by which the total number of Monte Carlo
events (of background type �) exceeds the expected number in the data:

F� �
NMC

tot��
N

exp
tot��

	 (4.3)

Since NOMAD collects large numbers of �� CC events, it is convenient to measure
well that one rate in the detector and scale the other background types by their known
relative rates (r�) with respect to the �� CC rate. Thus, N

exp
tot�� becomes

N
exp
tot�� � r�N� (4.4)

with r� determined by the beam Monte Carlo (NUBEAM).
The �� analysis of Ch. 3 is applied to the background Monte Carlo samples to get
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Efficiency � Branching Fraction (���)
Sample �� 1-prong �� 3-prong Sum
�� �

Candidates �"� " �"�� � �
"� "
lnL � 	 ��� � �� � ��� �
lnL � 	 ��� " ���� � �"�� �

	 � lnL � 	� ���� � �� � ���� �
	� � lnL � �	 ��� �� ��� � ���� ��
�	 � lnL � �	� �"
� �� ��� � ��"� ��
�	� � lnL � �	 "��� �� ��� � "��� ��
�	 � lnL � �	� ��� �� ��� � ���� ��
�	� � lnL � �	 �� � ��� � ��� �

lnL � �	 ��"� � ��� � ���� �

Table 4.2: Efficiencies multiplied by branching fractions for the hadronic 1-
prong and 3-prong � decay samples, and the sum of the two. The
errors are dominated by statistics.

Sample %� � Br (���)
�� �

Candidates �������������

lnL � 	 �
��������

lnL � 	 �������������

	 � lnL � 	� 
���������

	� � lnL � �	 �"����	����

�	 � lnL � �	� ����
������

�	� � lnL � �	 ����
������

�	 � lnL � �	� ������������

�	� � lnL � �	 �����������	

lnL � �	 "����������	

Table 4.3: Summed efficiencies multiplied by branching fractions for the
Monte Carlo �� samples, corrected by the signal data simulator.
The errors are statistical and systematic, respectively, where the
systematic errors include the branching fraction uncertainty and
the error due to the data/MC correction.
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Sample NC �� CC �� CC �e CC �e CC

DST Events 3067890 5032958 588732 2157453 296974
�� �

Candidates 174 18 7 58 57

lnL � 	 109 0 0 4 0
lnL � 	 65 18 7 54 57

	 � lnL � 	� 10 0 0 4 2
	� � lnL � �	 8 4 0 4 6
�	 � lnL � �	� 7 4 0 6 10
�	� � lnL � �	 17 3 4 3 11
�	 � lnL � �	� 10 3 1 5 11
�	� � lnL � �	 8 3 2 19 6

lnL � �	 5 1 0 13 11

Table 4.4: Numbers of Monte Carlo events selected in the �� �� analysis
applied to the background samples.

NMC
i�� in Sec. 4.2.1, the normalization constant F� is constructed in Sec. 4.2.2, and the

data simulator correction for the background is determined from the �� analysis (unlike
the data simulator for the signal) in Section 4.2.3.

4.2.1 Background Monte Carlo events

Table 4.4 lists the number of background Monte Carlo candidate events that are chosen
in the �� background analysis as a function of the lnL cut. Of the CC events listed,
only two of the �e CC events had the leading lepton incorporated into the definition of
the ��, this small percentage supporting the rationale for using the �� events discussed
in Sec. 3.4.2. In order to convert the numbers of Monte Carlo events in Tab. 4.4 into
an expected background for the �� data, the relative efficiency of each neutrino species
must be normalized to the size of the respective data sample and corrected for the
data/Monte Carlo difference.

4.2.2 Event normalization

The relative contributions from NC interactions and the four types of CC interactions
(��, ��, �e, �e) are given by the neutrino beam Monte Carlo, NUBEAM (Tab. 2.3).

The absolute normalization (the total flux of �� CC events) is set by the data them-
selves. The number of �� CC events is measured in the data and Monte Carlo with a
set of simple requirements so that any bias introduced is minimal. The total number of
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�� CC events in the data is then given by

N� � Nobs
� �%

MC
� 	 (4.5)

To a good approximation a �� CC event in NOMAD is any event with a muon
in it; every �� CC event contains a muon, and muon production in hadronic jets is
relatively rare. The approximation does not have to be exact since any inefficiency or
contamination of the signal should be mimicked by the Monte Carlo. However, since
there is no procedure like the data simulator to estimate the biases between the data and
Monte Carlo for �� CC events, three different �� CC definitions are used, and the N�

is averaged among them.
One definition has already been encountered in constructing the data simulator (cf.

Sec. 3.4.1). The other two definitions are looser and tighter variations on that same
theme. The looser definition requires the same fiducial volume requirements of the
primary vertex (cf. Sec. 3.3.1), and at least one match between a negatively charged
DC track and a muon chamber track segment (phase II muon). The looser definition
aims for inclusivity at the expense of purity.

The tighter �� CC requirements try to maximize the purity of the selected sample,
but must compromise the efficiency to do so. In principle, this should have little effect
on the calculated N� since both Nobs

� and %MC
� should be reduced proportionally, but

there is a higher risk of introducing data/Monte Carlo biases in the presence of tighter
cuts. The tighter selections are as follows:

 fiducial volume of Sec. 3.3.1,

 exactly one negative phase II muon (cf. Sec. 3.3.3),

 no other phase II muons of either charge,

 no muon catastrophes (cf. Sec. 3.1.3.2),

 no other loose muons (cf. Sec. 3.3.3),

 event passes electron veto of Sec. 3.3.2.

Table 4.5 shows the number of events selected by each �� CC definition, along
with the calculated N�. These three values yield an average of ��	"� � 	�� � ��
events. This is higher than the value quoted in Ref. [99] because of the addition of
the 1998 data and the use of a more inclusive1 fiducial volume for the Monte Carlo
sample in this analysis. The fiducial volume difference should have no effect on the

1Most other NOMAD analysis normalize their signal efficiencies and N� to a Monte Carlo sample
with fiducial volume cuts of jxj� jyj � ��
 cm. This analysis used jxj� jyj � �	
 cm, so the efficiencies
should be relatively lower and the N� correspondingly higher.



4.2: BACKGROUND CONTAMINATION 87

�� CC Definition Nobs
data Nobs

MC N�

Tighter Muon 
����� ���
� �	"��� ��
Fake NC DS Muon ��"�" ���"��� �	�"�� ��

Looser Muon ��"��"" ������" �	"

� ��

Table 4.5: Estimated number of data �� CC events using three different def-
initions, as described in the text. The total Monte Carlo �� CC
sample size is 5032958 events.

Sample N Monte Carlo /
N Data (exp.)

�� CC �	��

�� CC ��	�� �	�
�e CC ��	�� �	�
�e CC ��� ��

NC �	��� 	


Table 4.6: Factors by which the number of Monte Carlo simulated events
outnumber the corresponding expected number of data events.
The overall error due to the absolute (N�) normalization, which
is about 3%, is not included here.

calculated oscillation probability, since it enters only as a normalization constant for
both the signal efficiency (%sig) and the data (N�).

Given the size of the Monte Carlo samples from Tab. 2.5, the relative expected neu-
trino fluxes from the NUBEAM Monte Carlo (Tab. 2.3), and the normalization N�,
one can calculate the factor by which each CC Monte Carlo sample outnumbers the
corresponding expected data. The factor for the NC Monte Carlo is given by the ex-
pected number of CC events (of all varieties) multiplied by the NC to CC ratio [140] of
	���
� 	�
.

These factors have already been listed in Tab. 2.5, but are listed again here (Tab. 4.6)
with their errors for clarity. Only the error due to the uncertainty in the relative fluxes
is listed; the (� �%) error on N� is completely correlated among the samples.

4.2.3 Normalized �� analysis (Data/MC bias)

One can apply the same analysis and normalization to the Monte Carlo events selected
by the �� analysis, as just outlined above for the �� analysis. After normalizing the ��
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Sample NC �� CC �� CC �e CC �e CC

DST Events 3067890 5032958 588732 2157453 296974
�� �

Candidates 136 35 0 190 23

lnL � 	 70 0 0 4 1
lnL � 	 66 35 0 186 22

	 � lnL � 	� 14 6 0 9 1
	� � lnL � �	 12 4 0 13 1
�	 � lnL � �	� 9 7 0 25 1
�	� � lnL � �	 14 5 0 29 4
�	 � lnL � �	� 9 5 0 32 6
�	� � lnL � �	 5 6 0 41 6

lnL � �	 3 2 0 37 3

Table 4.7: Numbers of Monte Carlo events selected in the �� �� analysis.

MC samples, any remaining differences between MC and �� data can be ascribed to
some systematic data/MC bias. This bias can be measured using the �� data and then
applied to the signal region of the �� data later.

Table 4.7 lists the number of events selected by the �� analysis on each of the Monte
Carlo background samples. The reconstructed leading lepton was not incorporated into
the definition of the �� in any of the selected CC events, further supporting the hypothe-
sis of Sec. 3.4.2. After normalizing each �� Monte Carlo sample to the expected size in
the NOMAD data, the ratio of these gives the correction factor for the �� background.
Table 4.8 lists the expected number of �� events from all Monte Carlo samples, and the
number actually observed in the data.

There are not enough events to derive independent and statistically significant data/
Monte Carlo ratios from the information in each bin; therefore, the bins in the region
of the signal box (ln�) are combined in polynomial parameterizations of the data.
Fitting the CC and NC Monte Carlo samples independently yields data/Monte Carlo
ratios of 	������������ and 	
�����������, respectively, with a chi-square of 18.08 for 12 degrees
of freedom. A better fit may be obtained by using a linear parameterization of the
CC contribution. This yields a NC ratio of 	"����������� and a CC ratio of �	������������� �

�	�
 � 	�
�x, with #��d	o	f	 � ��	"���. x is the value of the low edge of the L
bin. (The L �  bin is neglected in the fits.) Other polynomial fits to the NC and
CC backgrounds yield lower chi-squared probabilities. The best-fit values from the CC
linear, NC constant fit are thus used to model the �� backgrounds, and the errors from
the fit are used as the basis for the systematic uncertainty.
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Expected Background Observed
Sample CC NC Data

�� �

Candidates ��	"�������� ��	��������� 25

lnL � 	 � 	� ��	�������� 10

lnL � 	 ��	"�������� ��	��������� 15

	 � lnL � 	� �	���
���� �	��������� 3

	� � lnL � �	 �	��������� �	��������� 4

�	 � lnL � �	� �	����
���� �	��������� 3

�	� � lnL � �	 �	���	���� �	��������� 1

�	 � lnL � �	� �	���	���� �	��������� 3

�	� � lnL � �	 �	����
���� 	��������� 0

lnL � �	 �	��������� 	��������� 1

Table 4.8: Numbers of expected �� events from the normalized Monte
Carlo and number observed in the data.

4.2.4 Summary of �� backgrounds

Normalizing the background events from Tab. 4.4 according to Tab. 4.6, and applying
the data/MC corrections fitted above yields the number of background events of differ-
ent types expected in the �� data. This is presented in Tab. 4.9, where the errors are
statistical and systematic due to the data/MC correction, respectively. The error listed
in the bottom row is the systematic error due to the event normalization for each back-
ground type, and there is an additional unlisted 3% completely correlated systematic
error in each bin due to the �� CC normalization. The uncertainty in the data/MC fits
presented in this section is by far the largest source of systematic error.

4.3 Oscillation Probability

This section presents the main results of this thesis: the oscillation allowed region and
the sensitivity of the analysis.

After the signal efficiency and background rates have been calculated by the Monte
Carlo and corrected by the data simulator, it is time to open the box and find out how
many events are found in the signal region. This is briefly presented in Sec. 4.3.1.

Next, one must determine whether these data provide evidence for neutrino oscilla-
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tions or not, and quote an appropriate limit in terms of oscillation probability. This is
performed by a classical (non-Bayesian) statistical analysis, first proposed by Feldman
and Cousins[141] of the NOMAD collaboration. The method is described in Sec. 4.3.2.

The Feldman–Cousins approach takes into account the statistical nature of a small
signal above a purely Poisson distributed background, and in principle can be applied
to a multibin analysis such as the one presented in this thesis. In actuality, though, the
expected backgrounds to this analysis are not purely Poisson, and Sec. 4.3.3 outlines
an approach to deal with that. With the backgrounds properly treated, the allowed
oscillation probability interval is then calculated.

One measure of an experiment’s power to resolve a small signal, which is similar
to the oscillation limit but largely independent of the data, is the sensitivity. This is
defined and calculated in Sec. 4.3.4.

Finally, the oscillation probability intervals (limits) are transformed to allowed (ex-
cluded) regions on the traditional phase space plot in Sec. 4.3.5.

4.3.1 �� data (Opening the box)

The expected number of �� background events is given by the numbers counted in the
various Monte Carlo samples (from Tab. 4.4) normalized to the data size (cf. Tab. 4.6)
and multiplied by the respective data/Monte Carlo correction factors derived from the
�� data. Table 4.10 shows the number of expected background events inside the ��

signal box (lnL � ), and the number of events observed in the data. The 16 events
selected by this analysis are listed by run and event number in Tab. 4.11.

In order to convert this into an oscillation probability, a binned likelihood analysis
is performed over the seven bins of Tab. 4.10.

4.3.2 Feldman–Cousins method

The �� results are analyzed using classical (non-Bayesian) statistics to derive an oscilla-
tion probability, and confidence intervals are generated via the Feldman–Cousins [141]
prescription.

Classical confidence intervals are described in Ref. [141], Sec. IIB. Using classical
intervals avoids the use of subjective prior probability density functions for the param-
eter being measured. The condition which must be satisfied for any confidence interval
of probability � is that the true (unknown) value lies inside the interval in a fraction �
of experiments. An interval satisfying this requirement is said to provide proper cov-
erage of the measured parameter. For any value �, however, there is an infinite set of
confidence regions which satisfy this requirement; upper limits, central intervals, and
lower limits are only the three most common choices.

The Feldman–Cousins method specifies a mechanism for choosing particular con-
fidence belts that provides proper coverage while retaining the power to eliminate un-
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Expected Observed
Sample Background Data

	 � lnL � 	� �	���������
����
���� 0

	� � lnL � �	 �	����
����
����
���� 2

�	 � lnL � �	� �	��������
����
���� 1

�	� � lnL � �	 �	��������	
����
���	 4

�	 � lnL � �	� �	��������	
����
���� 3

�	� � lnL � �	 �	
�������	
����
���� 3

lnL � �	 �	���������
����
���� 3

Total ��	���	����
����
���
 16

Table 4.10: Numbers of expected �� events from the normalized Monte
Carlo, and numbers in the data. The errors are statistical and
systematic, respectively, and the systematic uncertainties are
correlated.

likely values. By doing so, it also separates the choice of confidence belts (upper limit
vs. central interval, e.g.) from the data themselves. The prescription assumes the ability
to simulate a hypothetical measurement x which depends on a variable �with unknown
true value �t (via a Monte Carlo, for example). Thus, for each possible (physically al-
lowed) value of �, the probability of obtaining any hypothetical measurement x can be
calculated through simulation. This is written P�xj��. Conversely, for a given mea-
surement x, there is a physically allowed value of � which maximizes P�xj��. This
particular value of � is denoted by ��. The Feldman–Cousins ordering principle uses
the ratio of these probabilities. For a given value �, each possible measurement x is
assigned a rank given by

R �
P�xj��

P�xj���
	 (4.6)

Arranging all possible measurements for a given � in decreasing rank, the acceptance
region is the smallest2 set fx� 	 	 	 xng such that

Pn

� P�xj�� � �. Finally, once an actual
measurement x� has been made by an experiment, the confidence region for the true

2If there is no value of n such that
Pn

� P�xj�� � �, which may happen with Poisson statistics where
the values of x are discrete, then one must choose an acceptance region which overcovers�. In this case it
is desirable to choose the region which overcovers the least, so the smallest region with

Pn

� P�xj�� � �

is chosen.
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Run Event Likelihood L

9146 25795 0.68
13641 8987 0.77
7985 25239 1.25

14162 25050 1.62
14150 5715 1.75
15162 1182 1.85
20622 21389 2.00
20012 16748 2.26
21561 4752 2.38
13414 38325 2.45
14133 4205 2.60
8233 27254 2.76

12454 7214 2.79
17261 28133 3.56
12519 50137 3.69
17120 20937 3.89

Table 4.11: Individual events in the data selected by the �� analysis, listed
in order of increasing likelihood.



94 CHAPTER 4: RESULTS AND CONCLUSIONS

value �t is the union of all � whose acceptance regions include the value x�. This
method is also known as the frequentist approach.

Feldman and Geiser applied [142] this approach to the analysis of neutrino oscil-
lation data in several bins with expected backgrounds and errors. For N independent
measurements of �t (for instance, N energy bins, N likelihood bins as in this analysis,
N decay channels, orN different experiments), the rank for each � is just the difference
in #� between the � and �� likelihoods, which for Poisson statistics is [142]:

R � �

NX
i��

�
��i � ��i� � xi ln

�
��i

�i

�
	 (4.7)

If � is the number of oscillation signal events one expects in NOMAD, b is the
expected background, and n is the number actually observed, then the rank becomes

R � �

NX
i��

�
��i � ��i� � ni ln

�
��i � bi

�i � bi

�
	 (4.8)

The error on the background estimation can be included in an approximate way by
treating it as a Poisson fluctuation. If the error were truly Poisson, the expression for
the rank (Eq. 4.6) would become [142]:

R �
P�xj�� ����P�bj����

P�xj��� ���P�bj���
� (4.9)

where ��� is chosen to maximize the numerator, and �� and ��maximize the denominator.
A Monte Carlo program [143], is used to implement this procedure for the data

in the seven likelihood bins of Tab. 4.10. The Feldman–Cousins method calculates a
confidence interval on the number (Nosc) of �� CC events seen at a specified level
� for each likelihood bin, which is either an upper limit or a two-sided limit as the
method decides. Given the maximum number (N�) of �� CC events possible in each
bin, an oscillation probability (Posc � Nosc�N�) interval is defined for each bin, and
the intervals from all bins are combined using Eq. 4.7.

The maximum number of �� CC events in each likelihood bin (i.e. the number of
�� CC interactions expected for full �� � �� oscillation) is defined [99] by:

N� � N� � �������� �%� � Br�� (4.10)

where N� is the �� CC normalization from Sec. 4.2.2, %� � Br was encountered in
Sec. 4.1, and the ratio of cross sections expresses the �� CC suppression due to the
mass difference between the � and �. This last factor has been calculated [99] to be
0.48 in the energy regime relevant to NOMAD analyses. Table 4.12 lists N� for the
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Sample N�

	 � lnL � 	� "�� �� �
	� � lnL � �	 ��"� �� �
�	 � lnL � �	� ���� 
� ��
�	� � lnL � �	 �"�� 
� �

�	 � lnL � �	� ���� �� ��
�	� � lnL � �	 ���� ��� �


lnL � �	 ���� ��� ��

Table 4.12: Number of �� CC events expected in each likelihood bin of this
analysis if the oscillation probability were unity. The errors are
statistical and systematic, respectively.

seven likelihood bins of this analysis. The systematic error is dominated by the 5% un-
certainty in the cross section ratios �����. Also included in the systematic uncertainty
is the 3% uncertainty in the absolute �� CC rate, the uncertainty in the � branching
fractions, and the error introduced by the signal data/MC correction.

4.3.3 Background simplifications and the oscillation limit

In the background analysis of this thesis, there are two complicating factors. The first
is that the errors are not entirely due to Poisson statistics. Both the background central
values and their Poisson errors are reweighted due to the data/Monte Carlo system-
atic differences; in addition, the relative normalization of the different neutrino species
contributes to the background errors. These can still be handled in a consistent way for
each likelihood bin by calculating an effective integer-valued background, such that the
relative Poisson error of this effective error is equivalent to the actual calculated back-
ground error. For instance, if the background in some bin is estimated to be �	� � 	"
(��% error), a Poisson variable with a mean of 16 could be used as an effective error in
place of 2.5. Equation 4.9 can then be used to give weights to all possible experimental
outcomes, after which the backgrounds are rescaled back to their nominative values. In
the example above, the background of 16 would be rescaled by a factor of 0.156 after
calculating the rank.

The other complicating factor is that the background errors are partially correlated3

among the seven likelihood bins, while the procedure described in Ref. [142] assumes

3The correlations derive mainly from the data/Monte Carlo correction factors, which come from the
fit to the �� data. These errors are of approximately the same magnitude as the background Poisson
errors.
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Sample B� B� B� Data

	 � lnL � 	� �	�������� �	��������� �	����	���� 0

	� � lnL � �	 �	"���	���� �	����
���� �	��������� 2

�	 � lnL � �	� �	
���
���� �	�������� �	��������	 1

�	� � lnL � �	 �	��������� �	��������	 �	�������
 4

�	 � lnL � �	� �	��������� �	��������	 �	�������
 3

�	� � lnL � �	 �	��������� �	
�������	 �	��������� 3

lnL � �	 �	��������� �	��������� �	
�������� 3

Total ��	
�������� ��	���	���� �
	��������� 16

Table 4.13: Numbers of expected background events in the absence of cor-
related systematic errors (B�), and shifted up (B�) and down
(B�) by �� of the correlated errors. The quoted errors are the
statistical errors only. The number of events seen in the �� data
is also shown for reference.

independent bins. To reconcile this, first the correlated errors are separated and removed
from the background estimation. The oscillation probability may then be calculated us-
ing only the uncorrelated errors in each bin (B�). The effect of the correlated errors is
then estimated by shifting the expected backgrounds first up (B�) and then down (B�)
according to the sizes of the correlated errors, all the while leaving the uncorrelated er-
rors unchanged. These three sets of backgrounds are listed in Tab. 4.13, and comparing
them shows the effect of the systematic errors on the expected backgrounds.

Choosing each set of backgrounds in turn, one may calculate allowed oscillation
probability regions using the frequentist approach at arbitrary confidence levels (CL).
Table 4.14 lists the oscillation limits that can be set from these data at the 90%, 95%,
and 99% CL and shows the effect of the correlated systematic errors on those limits.
All confidence regions were determined by the data to be one sided upper limits.

4.3.4 Sensitivity

Reference [141] defines the sensitivity of an experiment (Sosc) as “the average upper
limit that would be set by an ensemble of experiments with the same expected back-
ground in the absence of signal.” The sensitivity of an experiment may be different
from the limit set by that experiment if the number of observed events differs markedly
from the expected background (due to statistical fluctuations, for instance). In order to
calculate the sensitivity rigorously, one should sum the limits obtained by all possible
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Sample B� B� B�

Posc 90% CL (����) 6.50 5.52 4.40
Posc 95% CL (����) 7.41 6.43 5.32
Posc 99% CL (����) 9.26 8.30 7.23

Table 4.14: Upper limits on the neutrino oscillation probability obtained in
the presence of no systematic errors (B�), and after shifting the
expected background levels up (B�) and down (B�) by �� of
the systematic errors.

Sample B� B� B�

Posc 90% CL (����) 2.11 2.58 3.12
Posc 95% CL (����) 2.52 3.09 3.73
Posc 99% CL (����) 3.35 4.08 4.94

Table 4.15: Neutrino oscillation probability sensitivities obtained in the
presence of no systematic errors (B�), and after shifting the ex-
pected background levels up (B�) and down (B�) by �� of the
systematic errors.

experimental outcomes weighted by the probability of the outcome. An approximation
of this rigorous method would be to randomly sample a large number of outcomes. A
less rigorous but still good approximation [142] is to calculate the limit obtained by an
experiment which sees the same number of data as its expected background. This last
method is by far the simplest to implement, and using it yields the sensitivities listed in
Table 4.15.

In order to account for the uncertainty represented by the systematic error, one
must choose the sample (B�,B�,or B�) which produces the most conservative result.
Comparing Tabs. 4.14 and 4.15, though, one can see that the oscillation limit and the
sensitivity anticorrelate among the three background sets. However, since the sensi-
tivity is independent of the data, the set with the most conservative sensitivity (B�) is
chosen as the result of this analysis:

Posc � �	�� ���, Sosc � �	��� ��� 90% CL,
Posc � �	��� ���, Sosc � �	
�� ��� 95% CL, and
Posc � 
	��� ���, Sosc � �	��� ��� 99% CL.

In the B� background sample, there are a total of 17.9 events, and only 16 events
were found in the data. If the sensitivity is calculated by computing the limit one would
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expect from an experiment that sees exactly the same as expected, one might expect that
the limit obtained in the case of fewer signal events would be more stringent. In fact,
in this case the opposite is true. The explanation can be found in a careful examination
of Table 4.13. While the total number of expected background events is larger for the
B� sample than was seen in the data, the distribution of those data events over the
seven likelihood bins was different from expected. This difference leads to the higher
oscillation limit than sensitivity not only for theB� sample, but for all three background
sets.

4.3.5 Phase space plots

Given an upper limit on the oscillation probability, one can use Eq. 1.18 to convert
this into an excluded region in sin� �� for each value of �m� of interest in a phase
space plot. For a point neutrino source and a monochromatic beam, this is simply
an algebraic exercise. For the NOMAD beam, however, sin� �� exclusion regions are
defined for each given �m� by:

sin� ��

�
sin�

�
�	�
�m�

jk�eV
��c��L�m�

P�MeV�c�

��
� Posc� (4.11)

where hxi denotes the expected value of x.
A Monte Carlo program was used to construct the expected value of the second sin�

term. Given the distribution of neutrino energies for Monte Carlo �� � events which
are selected by this analysis (see Fig. 4.1), oscillation lengths were chosen uniformly in
the range [421.5,835.6] meters and the resulting sin� terms were averaged. According
to the NUBEAM beamline Monte Carlo, the distribution of neutrino flight path lengths
is approximately uniform on this interval for neutrino energies greater than 25 GeV
(see Fig. 4.2).

Using this procedure, upper bounds on sin� ��were derived for 1000 values of�m�

in the range � � �m� � ��eV��c�. These points are plotted and connected by a line
in Fig. 4.3 for the 90% confidence exclusion region. Likewise, Fig. 4.4 shows the 90%
CL sensitivity region. From these plots one can learn that �� � �� oscillations are
excluded by this analysis for sin� �� values greater than �	
�� ��� at large �m�, and
�m� is required to be less than 3.75 eV�/c�for full two-family neutrino mixing.

4.4 Other NOMAD Results

The official �� � �� oscillation limit from NOMAD is based on the combination
of several independent analyses of different �� decay modes. For each mode several
independent analyses are performed, and only the one with the lowest sensitivity is
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Figure 4.1: Neutrino energy distribution of Monte Carlo � � � events se-
lected by this analysis. The average energy is 68 GeV.
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Figure 4.2: Monte Carlo neutrino flight path lengths for neutrinos with en-
ergies greater than 25 GeV.
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Figure 4.3: Phase space exclusion plot for this analysis. The 90% confi-
dence excluded region lies to the right of the curve.
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Figure 4.4: Phase space sensitivity plot for this analysis. The 90% confi-
dence excluded region lies to the right of the curve.
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published. The modes are combined as independent bins using the Feldman–Cousins
approach, just as the likelihood bins of this analysis were combined in Sec. 4.3.2.

Since the sensitivity (not the oscillation limit) of an analysis with no expected signal
is dependent only on the expected background, choosing the analysis with the smallest
sensitivity is almost data-independent. The fluctuation of a few events in the signal box
region does not affect the sensitivity of an analysis at all.

The analysis presented in this thesis is not the official published one for the � � �

decay channel because one other analysis had a slightly lower sensitivity. In the next
section I compare and contrast these two analyses. Following that, I present the data
and limits from all � decay modes in NOMAD.

4.4.1 Comparison with the official �� � analysis

The official NOMAD result for the �� � �� oscillation in the �� � channel is based
on an analysis that is similar to the one presented in this thesis. The basic approaches
of the two analyses are identical. Both make a set of event quality and CC veto cuts,
both identify rho candidates and use kinematics to separate �� � events from CC and
NC backgrounds. Both analyses use multidimensional likelihood functions, and they
both use a data simulator to reduce systematic effects.

The substantive differences between the analyses are summarized below:

1. The official analysis uses separate likelihood functions for the CC and NC back-
grounds, rather than the total background function of Sec. 3.2.3.

2. The likelihood functions used by the official analysis to separate � � � events
from the CC and NC backgrounds are convolutions of a two-dimensional and two
three-dimensional likelihood functions:

L � L� �L� �L� ���T� ��h� � ��h� Q�� � ��h� � P�k�

where ��T and ��h are the angles between the neutrino beam direction and the to-
tal energy vector and the hadron jet vector, respectively,��hhas been encountered
in Sec. 3.2.2 and Q� was defined in Sec. 3.2.3.3, ��h is the 3-space equivalent of
the transverse plane angle ��h, and � P�k is the component of the missing trans-
verse momentum that lies parallel to the � transverse momentum. Because each
likelihood function (L�, L�, L�) is only a function of 2 or three variables, the
smoothing of Sec. 3.2.3.2 is unnecessary.

3. In the official analysis, ��’s composed of one PO are treated independently from
two-PO ��’s.

4. The official analysis uses another likelihood analysis to identify �’s in an event.
For one-PO ��’s the function uses the angle in 3-space between the � (�) and
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Bin Background Data N�

I. 1-PO �� 6.10�1.93 5 883

II. 1-PO �� 0.33���	������ 0 1736
III. 2-PO �� 3.00�1.40 2 466

IV. 2-PO �� 0.06���

����� 0 222

Table 4.16: Results of the official NOMAD � � � analysis. For the four
bins of that analysis, the estimated backgrounds, observed data
events, and estimated number of events for full oscillation are
listed. Data obtained from Ref. [144].

the hadron jet and also the ratio of the � energy to the total visible energy in the
event:

L�PO ���h� E��Evis�

For the two-PO ��’s, the likelihood contains the ratios of the �� and the ��

energies to the total visible energy:

L�PO �L�
�PO �E�
�Evis� E���Evis� � ��h�

5. The data simulator was sufficient for calculating the data/MC correction in both
the signal and background regions, so the official analysis did not need to rely on
the �� data for this.

6. Two likelihood bins were constructed in the signal regions in both the one-PO
and two-PO data, for a total of four independent bins.

These four signal bins are listed in Tab. 4.16, with their respective numbers of back-
ground, events seen in the data, and effectiveN�.

Using the data from these bins to set an oscillation limit yields:

 Posc � 	��� ��� at 90% CL,

 Posc � 	
�� ��� at 95% CL, and

 Posc � �	��� ��� at 99% CL.

The sensitivity is estimated to be:

 Sosc � 	��� ��� at 90% CL,
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 Sosc � �	��� ��� at 95% CL, and

 Sosc � �	��� ��� at 99% CL.

The limits and sensitivities from the official analysis are significantly better than the
ones derived from the analysis of this thesis, but the results are not inconsistent with
each other. The fact that neither analysis sees any sign of neutrino oscillation is a good
mutual confirmation.

The analysis of this thesis used a more conservative approach in estimating the
background systematics and used only one grand likelihood function. The data simu-
lator approach used for the backgrounds in this analysis (Sec. 4.2.3) contributes a large
part of the systematic error; without that, the sensitivity might be 20% lower. The bulk
of the difference, however, comes from the separating power of the likelihood arrays.
With more events to populate the arrays, or with smaller arrays, the likelihood func-
tions become more smooth. The fact that the likelihood/smoothing approach taken in
this thesis was successful at all is remarkable given the sparseness of especially the
background likelihood arrays (around 1 event per 1000 bins).

4.4.2 The NOMAD oscillation results

Other analyses in NOMAD probed the � hadron 1-prong and 3-prong decay channels
as well as the electron leptonic decay channel to include 83% of the total � branching
fraction. The muonic decay channel was not used as the background due to �� CC
events was overwhelming. The greatest sensitivity search in each channel was then
used to define a global confidence interval for the NOMAD experiment.

The searches with the highest sensitivities all used some form of a kinematic likeli-
hood function to discriminate CC signal from NC backgrounds, and some of them even
used likelihood functions to help select their � candidates. The largest systematic errors
came from the data/MC correction (data simulator), at 20%.

In addition to the high multiplicity DIS searches, like the one in this thesis, addi-
tional searches were performed with the low multiplicity (LM) event topologies. A
single � with little or no accompanying hadronic shower may be found in a �� CC
event when the ��–nucleon interaction is either quasi-elastic or at a nuclear resonance.
While the kinematic properties of LM events are not as clear as DIS ones, the � re-
construction is made considerably easier. In addition, the cross section ratio ����� is
significantly higher for LM events as compared with DIS (0.60–0.82 vs. 0.48). The
LM analyses required the hadronic energy to be less than 1.5 GeV in an event, whereas
the DIS searches required it to be greater than the same amount, so these were really
independent searches.

Table 4.17 shows the backgrounds and efficiencies for the analyses used to define
the NOMAD confidence interval. These data suggest an upper limit on �� � ��



4.5: CONCLUSION 105

Decay Channel Bin Est. Bkgrnd Obs. N�

�� e��e�� DIS I �	�����������	 2 178
II 	������������ 1 208
III 	������������ 0 903
IV �	��� 	�� 2 654
V 	��� 	�" 0 473
VI 	��� 	� 0 1694

LM I �	�� 	"
 3 282
II �	�� 	�� 2 285
III 	��� 	�� 1 292

�� ���� DIS I "	�� �	�� 5 883
II 	�����	������ 0 1736
III �	� �	� 2 466
IV 	"���

����� 0 222

LM I �	�� �	� 7 458
�� h������ DIS 	���	����� 1 210
�� h��� DIS I �	�� �	� 3 817

II �	�� 	� 2 1205
LM "	
� �	� 5 357

�� h�h�h��� DIS �	"� �	� 9 1820
LM 	�� 	"0.4 0 108

Table 4.17: �� � �� oscillation search results from all official NOMAD
�� � analyses. Data obtained from Ref. [144].

oscillation probability of

Posc��� � ��� � �	�� ��� (4.12)

at 90% CL. The sensitivity of the experiment, also at 90% CL, is

Posc��� � ��� � �	�� ���	 (4.13)

4.5 Conclusion

Using the full (1995–1998) NOMAD data sample, and selecting the � � � decay
channel, a limit on the �� � �� oscillation probability is made at the 90% confidence
level of Posc � �	� � ���. The sensitivity of this analysis is Sosc � �	�� � ���



106 CHAPTER 4: RESULTS AND CONCLUSIONS

at 90% confidence. The oscillation limit excludes sin� �� at values greater than �	
��
��� at large �m�, and restricts �m� to values of less than 3.75 eV�/c�for full mixing.

The published [144] NOMAD analysis on 1995–1998 data makes a better limit, but
that includes all analyzed �� decay channels. The official � � � analysis achieves a
better sensitivity, and is able to place a more stringent limit on oscillations.

The event selection method based on a kinematical likelihood has been shown to be
effective. Even with very loose requirements on the ��, this analysis has been able to
make an oscillation limit consistent with other NOMAD analyses.

The main limitation to this analysis was in understanding the differences between
data and Monte Carlo backgrounds. Because of a lack of Monte Carlo statistics the data
simulator method was not viable. The precision of the data/Monte Carlo correction
factor was thus dependent on the number of �� events in both data and Monte Carlo.



Appendix A

Charge Bias in the Data Simulator

In Sec. 3.4.1 the NC data simulator is used to derive an estimate of the ratio of back-
ground efficiencies in the data and the MC:

fDSbak �
�
%dataDS

%MC
DS

�
bak

� fbak �
�
%data

%MC

�
bak

� (A.1)

where %dataDS and %MC
DS are the measured analysis efficiencies on the background (fake

NC) data simulator, and %data and %MC represent the true, unmeasurable efficiencies
on data and Monte Carlo, respectively.

The ratio of efficiencies for the CC backgrounds (fCCbak) and for the NC background
(fNCbak) is assumed to be the same. This is not unreasonable, since the �� in non-�� CC
and in NC events both come from the hadron jet, and the kinematics should be similar.

One might think that the numbers of selected events (Ndata
sel in Eq. 3.16 andNMC

sel in
Eq. 3.17) would just be the number of events in which a �� is found by this analysis. In
fact the sum of the �� events and �� events found in the background data simulator was
used in the efficiency ratio calculation. The rest of this appendix serves as a justification
for this procedure, which was originally proposed in Ref. [145].

Figure A.1 shows the � production mechanisms for NC and �� CC events. Restrict-
ing ourselves to first generation quarks, the NC interaction takes a u (d) quark to a u
(d) quark. The probability of finding a ��/�� in the hadron jet initiated by a u quark is
P�u� ���/P�u� ���. Since the leading u can form a �� directly with a d from the
sea (see Fig. A.1a), the probability P�u � ��� is much larger than P�u � ���. The
d quark has the corresponding probabilities P�d� ��� and P�d� ��� of forming a
�� and ��, respectively. The cross sections for producing �� and �� in NC events are
thus:

��NC � ��u��u � P�u� ��� � ��d��d � P�d� ��� (A.2)

��NC � ��u��u � P�u� ��� � ��d��d � P�d� ���	 (A.3)
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Figure A.1: Production mechanisms for � mesons in a) NC and b) �� CC
events.
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In a CC event (Fig. A.1b), the W� takes a d quark to a u, so the cross sections for
producing �� and �� in CC events are:

��CC � ��d���u � P�u� ��� (A.4)

��CC � ��d���u � P�u� ���	 (A.5)

By strong isospin symmetry, the fragmentation probabilities should be equivalent:

P�u� ��� � P�d� ��� (A.6)

P�u� ��� � P�d� ���	 (A.7)

Writing the NC cross sections in terms of the CC cross sections, we get:

��NC �
��u��u

��d���u

� ��CC �
��d��d

��d���u

� ��CC (A.8)

��NC �
��u��u

��d���u

� ��CC �
��d��d

��d���u

� ��CC	 (A.9)

From the difference inZ–quark couplings we find that ��u��u � 	���d��d. Since
the NOMAD target is approximately isoscalar, we also have �NC��CC � ���. Putting
these together we have

�NC � ��u��u� �z �
��
��d��d

���d��d

� �

�
�CC

�
�

�
��d���u

��
�

�
��d��d � �

�
��d���u	 (A.10)

Putting this back into Eqs. A.8 and A.9 we get

��NC �
�

�

�
�

�
��CC �

�

�
��CC

�
(A.11)

��NC �
�

�

�
�

�
��CC �

�

�
��CC

�
	 (A.12)

Since the cross sections must be the same in the Monte Carlo and data by construc-
tion, we can get fDSbak by comparing the right side of Eq. A.12 between Monte Carlo and
data in the NC data simulator. Recall that the NC data simulator measures the � com-
ponent in the hadron jet of �� CC events, i.e. ��CC and ��CC. So, in order to calculate
fDSbak, we need to sum the NC data simulator contributions from both �� and �� events.
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The relative contributions from �� and �� events appear to enter with different
weights in the above. In the ratio of data to Monte Carlo overall constants cancel, but
we are still left with a factor of 0.8 between the additive terms. We have made many
simplifying assumptions in reaching relation A.12, though. Including sea quarks makes
the disparity between ��CC and ��CC less pronounced, as does the introduction of quasi-
elastic and resonance-producing neutrino interactions. We assumed that the selection
efficiencies for �� and �� were equal, but this analysis slightly favors �� because the
negative backgrounds are larger.

Therefore, in light of the imprecision with which Eq. A.12 is derived, and especially
in view of the limited statistics in Tab. 3.4, the exact deviation from parity between the
�� and �� samples is ignored in this analysis, and the two samples are simply added.
As an additional benefit, implementing this method increases the available NC data
simulator statistics.
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[68] K. Daum et al. (Fréjus Collaboration), Z. Phys. C 66, 417 (1995).



BIBLIOGRAPHY 115

[69] M. Aglietta et al. (NUSEX Collaboration), Europhys. Lett. 8, 611 (1989).

[70] T. Kafka, Nucl. Phys. B (Proc. Suppl.) 70, 340 (1999).

[71] Y. Fukuda et al. (Kamiokande Collaboration), Phys. Lett. B335, 237 (1994).

[72] K.S. Hirata et al. (Kamiokande Collaboration), Phys. Lett B280, 146 (1992).

[73] Y. Fukuda et al.(Super-Kamiokande Collaboration), Phys. Rev. Lett. 81, 1562
(1998).

[74] M. Messier, Talk presented at 1999 Meeting of the Division of Particles and Fields
of the American Physical Society (DPF ’99), UCLA, 5–9 January 1999, published
electronically in the conference proceedings:
http://www.library.ucla.edu/dpf99/.

[75] G.G. Raffelt, “Neutrino Astrophysics at the Cross Roads”, hep-ph/9902271
(February 1999), to be published in Proc. 1998 Summer School in High-Energy
Physics and Cosmology, ICTP, Trieste, Italy, 29 June–17 July 1998, ed. by G. Sen-
janovic and A. Yu. Smirnov, World Scientific, Singapore.

[76] M. Apollonio et al. (CHOOZ Collaboration), Phys. Lett. B420, 397 (1998).

[77] W.M. Alberico and S.M. Bilenky, “New Developments in Neutrino Physics”, hep-
ph/9905254 and DFTT-26-1999 (Turin, May 1999).

[78] Y. Declais et al. (Bugey Collaboration), Phys. Lett. B338, 383 (1994).

[79] G. Zacek et al. (Gösgen Collaboration), Phys. Rev. D 34, 2621 (1986).

[80] A.A. Kuvshinnikov et al. (Krasnoyarsk Collaboration), JETP Lett. 54, 255 (1991).
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