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Abstract

W boson production at the Large Hadron Collider provides a fertile ground for

testing predictions of the Standard Model. This thesis presents a measurement of the

transverse momentum spectrum of W bosons produced via proton-proton collisions

at
√
s = 7 TeV using the ATLAS detector. The results are found to be in good

agreement with predictions made by Pythia Monte Carlo tuned to match the W and

Z transverse momentum spectra observed in proton-antiproton collisions at
√
s = 1.96

TeV at the Tevatron.

125k W → µν and 105k W → eν candidates were selected from data recorded in

late 2010, totaling 30 pb−1 in the muon channel and 33 pb−1 in the electron channel.

Background subtraction was performed using data driven techniques to estimate the

background from multijet events, and Monte Carlo to estimate the background from

W → τν, Z → ``, and top backgrounds.

A data driven approach was used to estimate the calorimeter response to hadronic

activity from the recoil of the W boson. Z → `` (` = e, µ) decays were selected

in data, and deviations between the leptonic and hadronic transverse momenta were

iii
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used to correct W signal Monte Carlo. The corrected response matrix was used

to unfold the observed W transverse momentum spectrum to the truth level using

an iterative technique called Bayesian unfolding. The unfolded spectrum was then

corrected for selection efficiency and normalized to produce a shape suitable for tuning

Monte Carlos.
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Chapter 1

Introduction

This thesis describes a measurement of the transverse momentum spectrum of the

W boson from proton-proton collisions at
√
s = 7 TeV using the ATLAS detector.

Chapter 2 begins with a discussion of the theoretical and experimental background

that is needed to frame the measurement. In particular, it focuses on the pieces of the

Standard Model which are relevant to W physics as well as previous measurements

made at the Tevatron. Chapter 3 provides an overview of the ATLAS detector and the

Large Hadron Collider. It also describes some of the nomenclature and terminology

that is used in the analysis. Chapter 4 describes some of the software that was

used in producing these results. Finally, Chapter 5 describes the full W transverse

momentum analysis.

1



Chapter 2

Background

The W boson plays an essential role in modern particle physics. The theory of

W boson couplings describes numerous effects from CP violation in neutral meson

mixing to the lifetimes of cosmic ray particles, while experimental measurements of

W boson properties have provided crucial insight into physical parameters such as

the mass of the Higgs boson. Further, future measurements will use W or W -like

physics to search for new particles.

This analysis is a measurement of the transverse momentum spectrum of W bosons

from proton-proton collisions at
√
s = 7 TeV. To frame the motivation and ramifica-

tions of this measurement, this section presents theoretical and experimental back-

grounds. A brief description of the Standard Model, accompanied by an overview of

electroweak physics, with an emphasis on W physics at hadron colliders, will be pre-

sented. Next, a summary of the theory of Quantum Chromodynamics (QCD) will be

given. This section will conclude with a description of existing experimental results

2



Chapter 2: Background 3

related to the transverse momentum spectrum of W bosons.

2.1 The Standard Model

The Standard Model (SM) [43, 60, 49, 61] is the foundation of modern under-

standing of the behavior of elementary particles. It allows very accurate theoretical

predictions of the nature of the most fundamental parts of matter. One can think of

it as the answer to all of the how and what type questions that can be asked about

the universe at the smallest scales: What holds a nucleus together? How do electrons

interact with each other? What is the lifetime of the neutron? It has allowed an un-

paralleled theoretical understanding of a world very different from the one to which

we are accustomed. Because of its importance, much of modern particle physics is

dedicated to testing and expanding upon the SM. While this thesis presents results

related to only a small subset of the predictions of the SM, it is worthwhile discussing

the SM as a whole in order to frame the importance of these measurements.

The SM is a quantum field theory which describes the fundamental particles and

their interactions, and in particular describes all of the known forces except for gravity.

Particles are divided into two types: fermions, which have half integer spin, and

bosons, which have integer spin. Their interactions are described by two basic forces:

a SU(2)×U(1) gauge group mediated by the W and Z bosons as well as the photon,

called the electroweak force, and a non-abelian SU(3) gauge group mediated by the

gluon, called the strong force. The particles are further broken down into quarks,

which are charged under the strong force, and leptons, which are not. The particles
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Figure 2.1: The Standard Model particles and their properties [75].

and their charges, masses, and spins are shown in Figure 2.1.

2.2 Electroweak physics

Electroweak theory, first described by Sheldon Glashow, Steven Weinberg, and

Abdus Salam in the late 1960s, is a unification of the electromagnetic and weak forces

under the gauge group SU(2)× U(1) [61]. The gauge group results in four massless

gauge bosons, typically termed (W+,W−,W 0) and B0, where the W bosons are the

mediators of the SU(2) group and the B is the mediator of the U(1) group. Through
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a process known as the Higgs mechanism, whereby a complex doublet develops a non-

zero vacuum expectation value, the electroweak symmetry is spontaneously broken

and three of the four gauge bosons become massive. The massive bosons are the W+,

W−, and Z, while the massless boson is the photon. The fundamental couplings of

electroweak theory are shown in Figure 2.2.

±l

lν

±W

(a) W± coupling to leptons.

1
q

2
q

±W

(b) W± coupling to quarks.

f

f

0Z

(c) Z0 coupling to fermions.

+f

-f

γ

(d) γ coupling to fermions.

Figure 2.2: Fundamental vertices for electroweak theory.

Electroweak theory has a number of important properties. All charged fermions

interact electromagnetically, via interactions with the photons which has a coupling

constant such that electromagnetic decays have a characteristic lifetime of roughly

10−16s. All fermions interact weakly, via interactions with the Z and W bosons

with characteristic decay lifetimes of roughly 10−13s. Particle flavor is conserved

in photon and Z interactions, whereas the W is capable of mixing up and down
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type quarks via couplings described by the Cabibbo-Kobayashi-Maskawa matrix [43,

59], which generally penalizes out of family transitions. Electromagnetic interactions

respect parity (P) and charge conjugation (C) symmetries, while weak interactions

are maximally P and C violating, and violate the combined symmetry CP as well.

The combined symmetry, CPT, where T is time reversal, has never been observed

to be broken by any force, and is believed to be generally conserved in all Lorentz

invariant quantum field theories.

2.2.1 W/Z Production at Hadron Colliders

At hadron colliders, W and Z bosons are produced primarily through quark-

antiquark annihilation, as shown in Figure 2.3, with production cross sections shown

in Tables 2.1 and 2.2. In W production, the quark and antiquark need be up type

and down type (or vice-versa) in order to conserve charge, and the two quarks need

not be of the same family, although the production will be Cabibbo suppressed [43]

if they are not. In SM Z production, only quarks of the same type and family are

allowed to contribute. This results in slightly different composition of the initial state

quarks in the production of W and Z bosons. For example, the bb̄ → Z production

channel is non-negligible at the Large Hadron Collider, while the similar bt̄→ W− or

tb̄→ W+ is highly suppressed due to the large mass of the top quark.

Experiment σW→`ν(nb) σγ∗/Z→``(pb)

CDF 2.749 ± 0.173 254.9 ± 16.2
D∅ 2.310 ± 0.150 221 ± 11

Table 2.1: Measured W and Z production cross sections time branching ratio to
leptons for

√
s = 1.96 TeV proton-antiproton collisions at the Tevatron [27, 30].
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q

0Z

(b) Z0

Figure 2.3: Leading order diagrams for production of W and Z bosons at hadron
colliders.

Experiment σW→`ν(nb) σγ∗/Z→``(pb)

ATLAS 9.96 ± 1.23 820 ± 119
CMS 9.95 ± 1.13 931 ± 362

Table 2.2: Measured W and Z production cross sections time branching ratio to
leptons for

√
s = 7 TeV proton-proton collisions at the LHC [25, 28].

At leading order, both W and Z bosons are produced in hadron colliders with

zero transverse momentum, as the initial state is entirely parallel to the beam line.

However, at higher order, emission of gluons and other strongly interacting particles

from the incident protons produces a boost perpendicular to the beam line. The

properties of these emissions are described for low and high transverse momenta in

sections 2.3.2 and 2.3.3 respectively. Predictions by two commonly used generators

for the W transverse momentum spectrum at the LHC are shown in Figure 2.4.

2.2.2 W/Z Decays

Both W and Z bosons decay quickly ( ∼ 10−25s ) to quarks and leptons, with

branching ratios shown in Tables 2.3 and 2.4 [59]. In particular, W bosons decay to

a charged lepton and neutrino roughly 33% of the time and hadrons the remaining

67% of the time, while Z bosons decay to charged lepton pairs roughly 10% of the
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Figure 2.4: Predicted W transverse momentum spectrum at the LHC from two com-
mon Monte Carlo generators.
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time, neutrinos roughly 20% of the time, and hadrons the remaining 70% of the time.

For both the W and Z, the hadronic channel is very difficult to separate from the

many orders of magnitude larger dijet background. For the Z, decays to neutrinos

are very difficult to trigger on and reconstruct due to the inability of detectors to

observe neutrinos. Thus, although the charged lepton decay channels are only a small

fraction of W and Z decays, they are typically used for experimental measurements.

Specifically, the muon and electron channels are most commonly used as the τ often

decays hadronically, resulting in similar problems to the direct hadronic decays.

Decay Branching Fraction (%)

`±ν (per flavor) 10.80± 0.09
hadrons 67.60± 0.27

Table 2.3: W boson branching fractions [59].

Decay Branching Fraction (%)

`+`− (per flavor) 3.37± 0.0023
invisible ( any νν decay ) 20.00± 0.06

hadrons 69.01± 0.06

Table 2.4: Z boson branching fractions [59].

While the decays of the W and Z boson are similar, experimentally measuring

their kinematics requires very different approaches. In the case of Z → `` decays, the

charged leptons may be fully reconstructed, and the full 4 vector of the decayed Z may

be calculated. However, in the case of W → `ν decays, the neutrino is lost, and thus

the kinematics of the decayed W may not be directly calculated. Instead, conservation

of 4 momentum is used to infer the energy of the neutrino. As will be discussed in
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section 2.3.1, even for symmetric beams, in hadron colliders the colliding energy along

the beam line is unknown and unbalanced. Instead, the neutrino balances with the

momentum of other particles in the event only in the plane perpendicular to the beam

line. Thus, one may only calculate the transverse momentum of the W , and not the

component parallel to the beam line.

2.3 Quantum Chromodynamics

Quantum Chromodynamics (QCD) [61] describes the interaction of fundamental

particles under the strong force, which is a non-abelian SU(3) gauge group. Both

quarks and gluons interact via the strong force (and are thus said to be colored), with

two fundamental vertices shown in Figure 2.5.

q

q

g

(a) QCD gluon emission vertex.

g

g

g

(b) QCD gluon self-coupling vertex.

Figure 2.5: Fundamental QCD vertices.

The primary property of QCD that is of interest toW physics is the so-called asymp-

totic freedom, which refers to the fact that the coupling strength between colored

particles decreases with decreasing length scales. In particular, at short distances, or

asymptotically large energies, particles become free with respect to the strong force.
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Mathematically, this is represented as the running of the coupling constant, αs, with

interaction energy, as described by:

αs(Q) =
6π

(11nc − 2nf ) log (Q/ΛQCD)
(2.1)

where Q is the energy transfer of the collision, nc = 3 is the number of color

charges, nf = 6 is the number of quark flavors, and ΛQCD ∼ 100MeV/c is the QCD

scale [61].

This running of αs results in an ever increasing potential energy as colored particles

are separated. In a roughly analogous process to electron-positron pair production

in high fields in Quantum Electrodynamics [43], at some point the energy becomes

large enough that a quark-antiquark pair is produced and the isolated color charge is

neutralized. This phenomenon is known as confinement and results in the property

of QCD that it is not possible to observe isolated particles which are not neutral with

respect to the strong force.

Confinement has a number of important experimental consequences for W physics.

First, it is not possible to collide quarks directly, as it is not possible to produce

beams of bare quarks. Instead, at hadron colliders, the beams consist of protons

or anti-protons. The consequences of this are discussed in sections 2.3.1 and 2.3.2.

Second, collisions involving the emission of a gluon or quark result in a complicated

production of particles due to the processes of showering, where quark-antiquark pairs

are produced due to confinement, and hadronization, where bare quarks condense into

mesons and baryons. The consequences of this are discussed in section 2.3.3.
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2.3.1 Parton Distribution Functions

Typically, Feynman diagrams for production processes at hadron colliders, such

as those for W and Z production in Figure 2.3, are written assuming the collision

of two quarks. However, as mentioned previously, hadron colliders collide beams of

protons or anti-protons as it is not possible to produce beams of bare quarks due to

confinement. The discrepancy means that even in symmetric beams, for example 3.5

TeV on 3.5 TeV proton beams as found at the Large Hadron Collider, the collision is

asymmetric in two important ways. First, the flavor of the parton (quark or gluon)

participating in the collision need not be the same for the two protons or between

collisions. Second, because the proton is a composite particle, the energy of the parton

is not equivalent to the energy of the proton, and is typically imbalanced even with

symmetric beams. Mathematically, these two issues are formulated with the use of

parton distribution functions, which describe the probability of extracting a parton

of a given flavor with a fraction, x, of the total proton energy.

PDFs have been measured by a number of collaborations, typically as best fit

curves combing measurements from deep inelastic scattering experiments, including

CTEQ, HERA, and MSTW [6, 63, 58, 48, 56, 32]. An example PDF from the HERA

collaboration is shown in Figure 2.6. Note that PDFs depend on the Q2, or energy

transfer, of the event, suggesting that the constituents of the proton change with

length scale. While there are small differences between the various distributions, the

general features are the same. Typically, valence quarks (for protons, u and d type

quarks) carry roughly a third of the proton energy, while gluons, heavy quarks, and
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Figure 2.6: Example parton distribution functions for the HERA collaboration [48].
The x axis shows x, the fraction of the proton energy held by the parton, and the y
axis shows xf(x), which is the product of x and the probability of selecting a parton
with that energy fraction.

anti-quarks are more likely to have only a small fraction of the proton energy.

While the transverse momentum of the W boson is not directly affected by the

PDF (as to first order they describe only momentum parallel to the beam line),

there are a number of indirect effects. Different PDFs have different variances in

the distribution of parton energies. In general, larger variances result in collisions

that have larger imbalances in colliding energy along the beam axis, which results in

larger boosts of the collision frame relative to the lab frame. This results in particles
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which are produced closer to the beam line, and thus affects the efficiency for finding

particles within the fiducial volume of the detector. Different PDFs also result in

slightly different transverse momentum spectra for the decay products of produced

W bosons, which results in slightly different effects from the inherent resolution of

the detector.

2.3.2 Soft QCD

Because of the running of αS with energy, the behavior of gluon emission is very

different at high and low energies. Specifically, at high energy, αS becomes small, and

the behavior of gluon emission becomes perturbative - it is possible to sum diagrams

of ever increasing number of gluon emissions and result in a finite number. This

regime is described in section 2.3.3. However, at low energy, αS becomes large with

decreasing energy, and it becomes very difficult to calculate the effects of so-called

soft QCD.

At low W transverse momentum, the W becomes more on shell, producing a di-

vergence in the propagator of the form [αS log(MW/pT )]n for diagrams of order n

in αS. This, combined with an increasing αS, results in divergences of the form

[αS log(MW/pT )]n, αnS logn−1(MW/pT ), and so on for diagrams of order n in αS [72].

The best known way to approach these divergences is with a technique known as

resummation [35], whereby an approximation of the leading logarithms of the total

sum is calculated via a power series. While this works in the transition region of

roughly 30 - 50 GeV, at lower transverse momentum, the divergences become large

and the solution breaks down. In this region, the calculation is very difficult, and
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is often accomplished via the introduction of a form factor which requires that the

calculated cross section go to zero at zero transverse momentum [72].

2.3.3 Jet Production

As it is not possible to produce colored particles in the final state to due con-

finement, the emission of a colored particle (such as a quark or a gluon) during the

interaction results in a complicated process by which the emitted particles are turned

into color neutral particles like mesons and hadrons. While this is in general very

difficult to explicitly model, there are a number of Monte Carlo simulators that im-

plement this process in two steps: showering, in which high energy colored particles

radiate gluons, and hadronization, in which color neutral particles are produced. The

two most commonly used such simulators are Pythia [74] and Alpgen [55] which

approach these processes in a different ways.

As will be discussed in detail later, the transverse momentum of the W is largely

determined by the transverse energy of hadronic activity in the event. Thus correctly

simulating hadronic activity is a very important part of modeling the transverse

momentum spectrum. Pythia is a leading order Monte Carlo, meaning that hard

emissions of gluons in W production are explicitly not included. As this would tend

to make the W transverse momentum spectrum less hard, the showering model of

Pythia is tuned to match measurements of the W and Z transverse momentum

spectra from the tevatron [74]. Alpgen on the other hand, explicitly models W

production associated with the emission of 1 or more hard quarks or gluons. While

more physical than the ad-hoc tuning used in Pythia there are other problems



Chapter 2: Background 16

associated with this approach. As gluons may be produced during the showering

process (Alpgen does not include showering/hadronization - it is usually interfaced

with another package, such as Herwig [36], to do that), the demarkation between

n and n + 1 jets is not as clear as it would first seem. Typically, processes such as

MLM matching [55] are used after showering to separate the produced events into

non-overlapping samples and a reweighting procedure is used to combine them.

In addition to Pythia and Alpgen there are a number of other monte carlo pack-

ages for simulating hadronic activity in W events, including Resbos[2], MCFM[5],

FEWZ[57, 41], DYNNLO[7], and MC@NLO[40]. These packages provide either higher

order explicit calculation of W + jet cross sections, differing capabilities for handling

of the logarithmic divergences at low transverse momentum or even full showering and

hadronization. Because of the sensitivity of the W transverse momentum spectrum

on jet production and model used for showering and hadronization, this measurement

provides an important probe of the accuracy of these models.

2.4 Previous measurements

The most recent measurements of the W transverse momentum were performed by

the CDF and D∅ collaborations at the Tevatron at
√
s = 1.8 TeV in 1991 and 1998

respectively [26, 29]. Prior to that, measurements were made by the UA1 and UA2

collaborations at the Spp̄S collider at
√
s ∼ 0.5 TeV in the mid 1980s [33, 34].
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The CDF measurement used 2496 candidate W → eν events, corresponding to

4.1 pb−1 of data, and corrected the measured spectrum back to the true distribution

using a parameterized bin-by-bin correction. The analysis made use of a Monte

Carlo sample that was tuned to match the observed jet and non-clustered energy

distributions, and then checked on Z → ee decays by requiring that the calorimeter

energy and dilepton energy balance. The Monte Carlo was then used to produce a

resolution function that was used to smear an estimate of the truth, and the estimate

of the truth was refined until the smeared result matched the truth. The results of

the CDF analysis are shown in Figure 2.7.

The D∅ measurement used 7132 candidate W → eν events, corresponding to 12.4

pb−1 of data, and compared the observed spectrum with a smeared version of the

theoretical prediction. Detector resolution fits from data were used to tune a Monte

Carlo simulation, which was then used to produce reconstruction level predictions

from theories under study. The reconstruction level predictions were then compared

with the observed data. The results of this analysis are shown in Figure 2.8 and

Figure 2.9.
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Figure 2.7: CDF measurement of the W transverse momentum spectrum [26].
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Figure 2.8: D0 measurement of the W transverse momentum spectrum [29].
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Figure 2.9: Theory-data comparison from D0 measurement of W transverse momen-
tum measurement [29].



Chapter 3

Detector

ATLAS (A Toroidal LHC ApparatuS) is a multipurpose particle detector experi-

ment located at CERN, near Geneva, Switzerland [24, 23]. Proton beams are acceler-

ated by the Large Hadron Collider (LHC) and collided near the center of the detector.

Properties of particles produced in collisions are measured by three basic subdetector

systems: a cylindrical tracking chamber made of silicon and straw tubes called the

Inner Detector; a sampling calorimeter made of lead and steel absorbers, and liquid

argon and scintillating tile samplers; and a muon spectrometer made of drift tubes,

thin gap, and resistive plate chambers. An overview diagram of the ATLAS detector

is shown in Figure 3.1.

Trajectories of various types of particles are show in Figure 3.2. Charged particle

track parameters are measured in the inner detector, and a 2 T solenoidal magnetic

field is used to provide bending power for momentum measurements. Photon and

electron energy is measured in the electromagnetic calorimeter, while baryon and

21
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Figure 3.1: A diagram of the ATLAS detector, with the various major subdetector
systems labelled [1].

meson energy is measured in the hadronic calorimeter. Muons typically lose only ∼ 4

GeV of energy in the calorimeter, and so high transverse momentum muons reach the

muon spectrometer at the outside of the detector, where large air core toroids provide

bending power for a second momentum measurement. Neutrinos do not interact with

the detector and thus can only be inferred from energy balance transverse to the

beam line.

3.1 Coordinate Systems

The ATLAS coordinate system is defined with the z-axis parallel to the beam line,

the x-axis horizontal, with positive x pointing to the center of the LHC ring, and the

y-axis vertical, with positive y pointing up. Two angles are defined: the azimuthal
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Figure 3.2: A diagram of the trajectories of various types of particles in the ATLAS
detector [3].
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angle φ, which is zero along the positive x axis and increases towards positive y,

and the polar angle θ, which is zero along positive z, and is −π along negative z.

In hadron colliders, another quantity, η ≡ − ln (tan (θ/2)), is useful as the rate of

particle production, dN/dη, is roughly flat over the fiducial volume of the detector.

Finally, the quantity ∆R ≡
√

∆φ2 + ∆η2 is often used when discussing the angular

distance between two objects.

As energy is not balanced in the z direction, as described in section 2.3.1, it is

often useful to refer only to the component of quantities perpendicular to the beam

line. For vector quantities, like momentum, this is done by taking the the x and y

components of the vector, and can yield the magnitude of the transverse momentum,

denoted pT , or the two dimensional vector transverse momentum ~pT . In somewhat

peculiar notation, the transverse component of scalar quantities, such as the trans-

verse energy, ET , is also often used. In this case, the transverse energy is calculated by

forming a vector with magnitude given by the energy in a detector element (typically

a calorimeter cluster) and direction given by the direction of the detector element.

The total transverse energy in the event,
∑
ET , is calculated by summing the scalar

ET of each calorimeter cluster (with corrections for muons), while the missing trans-

verse energy /ET is calculated by taking the magnitude of the vector sum of the ~ET of

each calorimeter cluster (again corrected for muons). As the name implies, non-zero

/ET is expected to be due to particles that are not measured by the detector, such as

neutrinos, although in practice, it can often be due to mis-measurements or imperfect

detector calibration.
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The trajectories of charged particles are parameterized with 5 parameters: 1/pT , φ,

d0, cot θ, and z0. The momentum of a charged particle is measured via its curvature,

which makes 1/pT a natural parameter, as curvature is proportional to the strength

of the bending field divided by the transverse momentum. φ is simply the azimuthal

angle of the track, and cot θ the cotangent of the polar angle. d0 is the transverse

distance to the beam axis at the point of closest approach. In general, promptly

produced particles have a d0 < 130µm, while particles from long lived particle decays

(such as pions and kaons) have a measured d0 greater than 1 mm. Finally, z0 is the

distance from the origin along the z-axis at the point of closest approach of the track.

In general, the spread of the collision area in z results in collision z0’s of up to 10 cm

relative to the origin, and so z0 is commonly measured relative to the z position of

reconstructed primary vertices.

3.2 The Large Hadron Collider

The Large Hadron Collider (LHC) is a proton-proton and heavy ion collider located

near Geneva, Switzerland [39]. It is designed with a center of mass energy of 14 TeV

and an instantaneous luminosity of 1034 cm−2s−1 for proton-proton collisions, and

2.8 TeV per nucleon with an instantaneous luminosity of 1027 cm−2s−1 for lead-lead

collisions. In 2010, it achieved proton-proton collisions with a center of mass energy of

7 TeV, a peak instantaneous luminosity of ∼ 2×1032 cm−2s−1, and a total integrated

luminosity of 48.1 pb−1. The delivered and recorded integrated luminosity over the

course of 2010 is shown in Figure 3.3.
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(a) Linear (b) Logarithmic

Figure 3.3: Delivered and recorded luminosity during 2010.

The general layout of the LHC, along with its injector chain, is shown in Figure 3.4.

Protons are produced at an energy of 50 MeV from the LINAC accelerator system,

and then routed to Proton Synchrotron Booster (PSB), where they are accelerated

to 1.4 GeV. From there, they are accelerated by the Proton Synchrotron (PS) to

25 GeV, and by the Super Proton Synchrotron (SPS) to 450 GeV, after which they

are injected into the LHC. All of the injector accelerators were built prior to the

construction of the LHC and underwent extensive upgrades to handle the needed

luminosity and bunch spacing requirements of the LHC.

The LHC magnet system is based upon superconducting NbTi Rutherford cables

operating at a nominal field over 8 T and cooled to less than 2 K by superfluid helium.

The layout of the main dipole bending magnet is shown in Figure 3.5. To fit in the

existing LEP tunnel, the dipole magnets were built with both beam pipes inside the

same cryostat, wrapped in superconducting coils. The design used provides magnetic

fields in the opposite direction in each beam pipe in order to correctly bend the
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Figure 3.4: A diagram of the LHC along with its injector chain [8].
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Figure 3.5: A diagram of the main LHC bending magnet [1].

counter rotating beams. In addition to the 14 m long 1,232 such bending magnets

in the LHC, there are over 3,000 smaller superconducting and normal conducting

magnets for beam corrections, focusing, and insertions in collisions. In particular, a

number of strong focusing magnets are used to squeeze the proton bunches prior to

collisions in order to maximize the instantaneous luminosity.

The general parameters of the LHC beams are shown in Table 3.1. Protons are

injected into the LHC in bunches, which is ∼ 1011 protons squeezed into a single RF

bucket approximately 4 ns long. In order to increase the number of bunches in the

beam, and therefore the instantaneous luminosity, bunches are typically injected into
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Property Nominal Value Peak 2010 Value

Ring Circumference [ km ] 26.695 26.695
Energy per Beam [ TeV ] 7 3.5

Instantaneous Luminosity [cm−2s−1] 1034 2× 1032

Bunches per beam 2808 368
Bunch spacing [ ns ] 25 75
Bunch length [ ns ] 4 4
Protons per bunch 1.15× 1011 1.15× 1011

Beam spot size (x) [ µm ] 16.7 44.8
Beam spot size (y) [ µm ] 16.7 44.8
Beam spot size (z) [ cm] 7.55 7.55

β∗ [m] 0.55 2
Luminosity per bunch [cm−2] 4× 1026 5× 1025

Table 3.1: Properties of the Large Hadron Collider.

the LHC as bunch trains, which are a series of bunches nominally separated by 25 ns

(75 ns in 2010). Bunch trains are produced by a multiple splitting procedure in the

PS, whereby high intensity bunches from the PSB are split twelve ways forming a

bunch pattern of 72 bunches followed by 12 empty buckets [39]. The bunch structure

of the LHC results in two important consequences for physics, termed in time and out

of time pileup respectively. In in time pileup, the fact that bunches consist of many

protons results in multiple collisions per bunch crossing - roughly four at peak 2010

luminosity. In out of time pileup, the fact that bunch trains are used with a bunch

spacing of 75 ns means that multiple bunch crossings occur while the detectors are

still responding to the first collision. In both cases, the extra collisions are unlikely

to contain high pT objects, but can result in extra energy and particle multiplicity in

the event.
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Sub detector Location Resolution (µm) Channels (106) η coverage

Pixel B-layer Rφ = 12, z = 66 16 ±2.5
2 barrel layers Rφ = 12, z = 66 81 ±1.7
5 endcap disks Rφ = 12, R = 77 43 1.7− 2.5

(per side)
SCT 4 barrel layers Rφ = 16, z = 580 3.2 ±1.4

9 Endcap wheels zφ = 16, R = 580 3.0 1.4− 2.5
(per side)

TRT Barrel 170 (per hit) 0.1 ±0.7
9 Endcap 170 (per hit) 0.32 0.7− 2.5

Table 3.2: Properties of the ATLAS Inner Detector [24].

3.3 Inner Detector

Tracking of charged particles in ATLAS is provided by the Inner Detector (ID),

which is a 1.2 m cylindrical tracking chamber consisting of three subdetectors. Closest

to the beampipe, typically providing three space-point measurements, is a very high-

granular and high-precision semiconductor based tracker called the Pixel Detector.

Outside of the Pixel Detector is the Semiconductor Tracker (SCT), which typically

provides eight space-point measurements. Finally, providing on average 36 space-

point measurements is the Transition Radiation Tracker (TRT), which uses straw

tubes to provide both position information and particle identification. The general

parameters of the ID are shown in Table 3.2, and schematic views are shown in Figures

3.6 and 3.7.

The nominal performance of the ID is shown in Figure 3.8. At pT less than roughly

15 GeV, resolution is dominated by multiple scattering in the detector material,

while above 15 GeV, d0 and z× sin(θ) resolution become very good, approaching the
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Figure 3.6: A diagram of the ATLAS barrel Inner Detector [1].
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Figure 3.7: A diagram of the ATLAS endcap Inner Detector [1].
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Figure 3.8: Nominal performance of the ATLAS Inner Detector [10].

100µm level and better. Charged particle momentum measurements are performed

by determined the bending radius due to the 2 T solenoidal field. Above roughly

15 GeV, the momentum resolution is dominated by the ability to resolve the sagitta

of the particle, which depends on the largely TRT hit resolution. At 100 GeV,

the momentum resolution is better than 5% over the majority of the detector. At

very high energies (above 1 roughly 1 TeV), charge misidentification becomes very

problematic, with a charge mis-measurement rate approaching 5%.
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3.3.1 Pixel Detector

The Pixel Detector is designed to provide very high resolution measurements very

near the beampipe in order to allow vertexing of displaced decays such as those from

B hadrons despite the very high particle multiplicity of LHC collisions. It is broken

into three modules: a removable single layer at 5 cm from the center of the beam pipe

called the B-layer; a pair of barrel layers at radii of 9 and 12 cm respectively; and an

end cap module consisting of five layers between 11 and 20 cm.

Each detector element is roughly 50 µm in Rφ and 300 µm in z, which provides

very high resolution as well as helps avoid detector saturation in the very high flux

environments so close to the ATLAS collision point. 61,440 elements are formed into

a 62.4 mm long by 21.4 mm wide pixel module, which is read out and buffered by

16 readout chips. Each layer is then formed by tiling pixel elements, resulting in a

final sub detector system with 140 million detector elements and roughly 1.7% of a

radiation length per layer.

3.3.2 Semiconductor Tracker

The Semiconductor Tracker (SCT) is designed to provide 8 precision measurements

of particle trajectory, which are useful in determining of the particle vertex and tra-

jectory. In order to avoid the high cost, in dollars, material, and readout channels, of

the Pixel Detector, the SCT consists of silicon microstrip detectors bonded in small

angle stereo to provide measurement in the long (R or z) dimension. The SCT is split

into two modules: a barrel module which provided four space point measurements,
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and an endcap with nine wheels.

768 readout strips with an 80 µm pitch are arranged in a 6.36× 6.40 cm2 detector

element. Two detector elements are bonded together to form a collection of 12.8 cm

long strips. Two such 12.8 cm long strips are then glued together, one on top of each

other, with a 40 mrad angle between them, and the readout electronics are fitted to

the combination. A barrel layer is formed by placing the merged elements such that

the precision measurement is in Rφ and the coarse measurement is in z. Similarly,

an endcap wheel is formed with the precision measurement in zφ and the coarse

measurement in R. The resulting SCT sub detector has 6.2 million readout channels,

with a resolution in of 16 µm in the precision direction and 500 µm in the coarse

direction. As will be discussed in section 3.6, the bending due to the magnetic field

in the ID is only in φ, and thus the coarse measurement is not needed for momentum

measurements.

3.3.3 Transition Radiation Tracker

The Transition Radiation Tracker (TRT) provides approximately 36 measurements

of particle trajectories in the bending direction as well as electron identification capa-

bility with modest cost in terms of dollars, readout channels, and material, by using

long, thin straw tubes. Each straw tube has an inner diameter of 4 mm, a 30 µm

diameter gold-plated W-Re wire held at high voltage, and is filled with a mixture

of 70% Xenon, 20% CO2, and 10% CF4 gas. To enhance mechanical and electrical

properties, the tubes are wrapped with Kapton film and reinforced with aluminum

and carbon fiber. Charged particles incident on the tubes ionize the gas mixture and
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the produced electrons drift in the electric field of the wire. A measurement of the

drift time is converted to drift radius via a calibrated function called the RT relation,

and the drift radius is used in pattern finding. To aid in particle identification, a

radiator is inserted between the tubes which causes the emission of transition radia-

tion photons by high β particles (i.e., electrons and positrons). The amount of charge

deposited in the straw tube is then used to separate high threshold hits, which include

transition radiation, from low threshold hits, which do not.

The complete TRT consists of a barrel and two end-cap modules. The barrel

contains roughly 50,000 straw tubes, split at the center to reduce occupancy and

stretched axially from z = −72 cm to z = +72 cm. Each end-cap consists of 18

wheels of radial straw tubes of varying length to produce full coverage to |η| = 2.5.

The per hit resolution of each straw tube is roughly 170 µm, which gives a combined

measurement of better than 50 µm in the bending direction of the ID magnet system.

As there is no segmentation along the length of the wire, there is no information

about the particle trajectory in the direction perpendicular to the bending direction.

3.4 Calorimeter

The ATLAS calorimeter is composed of a lead/liquid argon electromagnetic (EM)

calorimeter extending to |η| = 3.2 surrounded by an iron/scintillating tile and cop-

per/tungsten/liquid argon hadronic calorimeter extending to |η| = 4.9. A diagram of

the ATLAS calorimeter is shown in Figure 3.9 and the general properties are shown

in Table 3.3.
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Figure 3.9: A diagram of the ATLAS Calorimeter [1].

Name Coverage Layers Granularity (∆η ×∆φ)

EM Barrel Layer 1 |η| < 1.475 1 0.003× 0.1
EM Barrel Layer 2 |η| < 1.475 1 0.025× 0.025
EM Barrel Layer 3 |η| < 1.475 1 0.05× 0.025

EM Endcap Layer 1 1.375 < |η| < 3.2 1 ∼ 0.004× 0.1
EM Endcap Layer 2 1.375 < |η| < 3.2 1 ∼ 0.025× 0.025
EM Endcap Layer 3 1.5 < |η| < 2.5 1 0.05× 0.025

Presampler |η| < 1.8 1 0.025× 0.1
Hadronic Tile Layers 1, 2 |η| < 1.7 2 0.1× 0.1

Hadronic Tile Layer 3 |η| < 1.7 1 0.2× 0.1
Hadronic LAr endcap 1.5 < |η| < 2.5 4 0.1× 0.1
Hadronic LAr forward 2.5 < |η| < 3.2 4 0.2× 0.2

FCAL 3.1 < |η| < 4.9 3 ∼ 0.2× 0.2

Table 3.3: Properties of the ATLAS Calorimeter [24].
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The nominal performance of the ATLAS EM calorimeter is shown in Figure 3.10.

The very high segmentation in the inner layer of the EM calorimeter allows measure-

ment of η and φ to better than 5 mrad over most of the fiducial volume. It is worth

noting that there is slightly worse performance in φ due to larger segmentation, as well

as the tendency of clusters to be smeared in the solenoid bending direction due to the

emission of bremsstrahlung. A major challenge in precision measurements of electron

and photon energy resolution is the large amount of material before the calorimeter,

shown in Figure 3.11, which results in a high probability of photon conversion, shown

in Figure 3.12. Despite this, the EM calorimeter provides a photon energy resolution

nearing 2% at 100 GeV with excellent linearity. Studies to determine the resolution

from data using Z → ee decays will be presented as part of this analysis. Finally,

it is worth noting the dramatically decreased performance in almost all measures in

the crack region near |η| = 1.4. For most analyses, including the electron channel of

this analysis, objects from the crack region are specifically excluded due to the poor

performance.

The nominal performance of the hadronic calorimeter is shown in Figure 3.13. The

hadronic calorimeter provides good jet response up to jet energies beyond 1 TeV.

Importantly for this analysis, the /ET resolution is roughly 8 GeV in most electroweak

events, with a direction resolution better than 0.1 radians when there is at least 80

GeV of /ET . The /ET performance in electroweak events will be measured using data

driven techniques as part of this analysis.
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(a) η resolution for 100 GeV photons (b) φ resolution for 100 GeV electrons/photons

(c) Photon energy resolution (d) Photon energy linearity

Figure 3.10: Nominal performance of the ATLAS Electromagnetic calorimeter [10].modules, and also, more recently, during the combined test beam (CTB) runs in 2004 [2,3] and in a series
of cosmic-ray tests in 2006 [2, 4]. The results have been used to update and validate the modelling of
the detector response in the Monte-Carlo simulation. This paper describes the expected performance of
the inner detector in terms of tracking, vertexing and particle identification. The alignment of the inner
detector is described elsewhere ( [2] and the references therein).
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Figure 3: Material distribution (X0, λ ) at the exit of the ID envelope, including the services and thermal
enclosures. The distribution is shown as a function of |η | and averaged over φ . The breakdown indicates
the contributions of external services and of individual sub-detectors, including services in their active
volume.

2 Track reconstruction

The inner detector track reconstruction software [5] follows a modular and flexible software design,
which includes features covering the requirements of both the inner detector and muon spectrometer [2]
reconstruction. These features comprise a common event data model [6] and detector description [7],
which allow for standardised interfaces to all reconstruction tools, such as track extrapolation, track fit-
ting including material corrections and vertex fitting. The extrapolation package combines propagation
tools with an accurate and optimised description of the active and passive material of the full detector [8]
to allow for material corrections in the reconstruction process. The suite of track-fitting tools includes
global-χ2 and Kalman-filter techniques, and also more specialised fitters such as dynamic noise adjust-
ment (DNA) [9], Gaussian-sum filters (GSF) [10] and deterministic annealing filters [11]. Optimisation
of these tools continues and their performance will need to be evaluated on real data. The tools intended
to cope with electron bremsstrahlung (DNA and GSF – see Section 5.1) will be run after the track re-
construction, as part of the electron-photon identification. Other common tracking tools are provided,
including those to apply calibration corrections at later stages of the pattern recognition, to correct for
module deformations or to resolve hit-association ambiguities.

Track reconstruction in the inner detector is logically sub-divided into three stages:

1. A pre-processing stage, in which the raw data from the pixel and SCT detectors are converted
into clusters and the TRT raw timing information is translated into calibrated drift circles. The
SCT clusters are transformed into space-points, using a combination of the cluster information
from opposite sides of a SCT module.

2. A track-finding stage, in which different tracking strategies [5, 12], optimised to cover different
applications, are implemented. (The results of studies of the various algorithms are reported else-

TRACKING – THE EXPECTED PERFORMANCE OF THE INNER DETECTOR
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Figure 3.11: Material prior to entering the ATLAS calorimeter [10].



Chapter 3: Detector 40

|η|
0 0.5 1 1.5 2 2.5

En
er

gy
 (G

eV
) 

0

20

40

60

80

100

E loss before PS
E loss before strips
Uncorrected  
Corrected

ATLAS

Figure 1: Average energy loss vs. |η | for E =
100 GeV electrons before the presampler/strips
(crosses/open circles), and reconstructed energies
before/after (solid/open boxes) corrections.

|η|
0 0.5 1 1.5 2 2.5

Fr
ac

tio
n 

of
 c

on
ve

rte
d 

ph
ot

on
s

0
0.1
0 2
0 3
0.4
0 5
0.6
0.7
0 8
0 9

1

R < 115 cm
R < 80 cm

ATLAS

Figure 2: Fraction of photons converting at a ra-
dius of below 80 cm (115 cm) in open (full) cir-
cles, as a function of |η | [4].

(E/p < 10 [6, 7]). If one is found, the reconstruction checks for presence of an associated conversion.
An electron candidate is created if a matched track is found and no conversion is flagged. Otherwise, the
candidate is classified as a photon.

This early classification allows applying different corrections to electron and photon candidates.
It is the starting point of a more refined identification based largely on shower shapes, described in
companion notes [6, 7]. Four levels of electron quality are defined (loose, medium, tight, and tight
without isolation). The available photon selection corresponds to the tight electron selection (excluding
tracking requirements). The medium and tight selections are used in some parts of the calibration analysis
described in this note. But the corrections derived are then applied to all electron and photon candidates.

1.2 Calorimeter granularity

The electromagnetic calorimeter (Fig. 3) was designed to be projective in η , and covers the pseudorapid-
ity range |η | < 3.2. Precision measurements are however restricted to |η | < 2.5; regions forward of this
are outside of the scope of this note. The calorimeter is installed in three cryostats: one containing the
barrel part (|η | < 1.475), and two which each contain the two parts of the end-cap (1.375 < |η | < 3.2).
Its accordion structure provides complete φ symmetry without azimuthal cracks. The total thickness
of the calorimeter is greater than 22 radiation lengths (X0) in the barrel and greater than 24X0 in the
end-caps. It is segmented in depth into three longitudinal sections called layers, numbered from 1 to 3
outwards from the beam axis. These layers are often called “front” (or “strips”), “middle,” and “back.”
The η granularity of the calorimeter for the front and middle layers is shown in Table 1. The φ size of
cells is 0.025 in layer 2 and 0.1 in layer 1. Layer 3 has a granularity of ∆η ×∆φ = 0.050× 0.025. For
|η | < 1.8, a presampler detector is used to correct for the energy lost by electrons and photons upstream
of the calorimeter. All these regions must be treated separately in deriving the individual corrections.

The effect of the choice of cluster size on electron and photon energy reconstruction has been studied
in Refs. [1] and [8]. These results are still the baseline of the present software. For electrons, the energy
in the barrel electromagnetic calorimeter is collected over an area corresponding to 3× 7 cells in the
middle layer, i.e. ∆η ×∆φ = 0.075×0.175. For unconverted photons, the area is limited to 3×5 cells in
the middle layer, whereas converted photons are treated like electrons. The cluster width in η increases
with increasing |η |; therefore, an area of 5× 5 cells in the middle layer is used for both electrons and
photons in the end-cap calorimeter.

ELECTRONS AND PHOTONS – CALIBRATION AND PERFORMANCE OF THE . . .

45

Figure 3.12: Probability of photon conversion before a radius of 80 and 115 cm [10].

3.4.1 Electromagnetic Calorimeter

The electromagnetic (EM) calorimeter consists of two distinct modules: the barrel,

with coverage up to |η| = 1.475, and the end-cap, with coverage over 1.375 < |η| < 3.2.

The barrel is broken down further into two identical half barrels with a space of 6 mm

at z = 0 and each end-cap is broken into two wheels, with an outer wheel covering

1.375 < |η| < 2.5 and an inner wheel covering 2.5 < |η| < 3.2.

The EM calorimeter is a liquid argon calorimeter with Kapton electrodes and lead

absorber plates in an accordion shape as shown in Figure 3.14, which allows fully

symmetric φ coverage without an azimuthal cracks. Incident charged particles pro-

duce electromagnetic showers in the lead, which cause ionization in the liquid argon,
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(a) Response for central jets (b) Response for forward jets
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Figure 3.13: Nominal performance of the ATLAS Hadronic calorimeter [10].
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Figure 3.14: A picture of the accordion structure used in the ATLAS electromagnetic
calorimeter [1].

which in turn produces an electrical signal in the Kapton electrodes, and results in a

measurement of the deposited energy. The total thickness of the EM calorimeter is

> 24 radiation lengths over the entire coverage.

To provide precision shower shape, direction, and particle identification, the EM

calorimeter is segmented longitudinally into 3 layers, and in η and φ with a granularity

of roughly 0.05× 0.05, which depends on η and φ. The resulting number of channels

is ∼ 190,000. Due to the considerable amount of material in the ID (roughly 2

radiation lengths), it is necessary to correct for photon and electron energy loss and

showering prior to the calorimeter. To account for this, a presampler, which consists

of a finely segmented active liquid argon layer, is placed before the entrance to the

EM calorimeter.
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3.4.2 Hadronic Calorimeter

The ATLAS hadronic calorimeter is a sampling calorimeter that uses three tech-

nologies to handle the increasing particle flux rates with increasing |η|. In the barrel,

for |η| < 1.7, iron is used as the absorber, while scintillating tiles are used as the active

material. This region is further subdivided into two regions, the barrel (|η| < 1.0)

and the extended barrel (0.8 < |η| < 1.7) in order to allow access for services and

cables. In the endcap, between |η| = 1.5 and |η| = 3.2, copper plates are used as

the absorber, while liquid argon is used as the active material, as it has much better

performance than the scintillating tiles in the face of high occupancy.

In the very high particle flux of the forward region up to |η| = 4.9, a hybrid

copper/tungsten system is used. A metal matrix filled with concentric rods and

tubes made of the absorbing material is filled with liquid argon and a high voltage is

applied to the rods. In all cases, incident particles interact with the absorber material,

producing a hadronic shower in the active material that is read as either scintillation

or particle ionization by the readout electronics.

In order to reduce punch through to the muon system and provide a precise mea-

surement of the energy of the very high energy jets produced at the LHC, the ATLAS

hadronic calorimeter is 10 interaction lengths or larger over its entire coverage. Gran-

ularities of (0.1 − 0.2) × (0.1 − 0.2) combined with between 3 and 4 longitudinal

sampling layers provide sufficient resolution for measuring showering development

and location while limiting readout complexity and cost.
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Figure 3.15: A diagram of the ATLAS Muon Spectrometer [1].

3.5 Muon Spectrometer

The ATLAS Muon Spectrometer provides particle tracking up to |η| = 2.7 and

triggering up to |η| = 2.4. Precision measurements in the magnetic bending direction

are made by gas drift tubes, called Monitored Drift Tubes (MDT), while second coor-

dinate information and triggering are provided by Resistive Plate Chambers (RPC)

in the barrel and Thin Gap Chambers (TGC) in the endcap. In the inner most

layer of the forward region ( 2.0 < |η| < 2.7 ), Cathode Strip Chambers (CSC) are

used to handle the very high particle multiplicity. A diagram of the ATLAS Muon

Spectrometer is shown in Figure 3.15.
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The nominal performance of the Muon Spectrometer is shown in Figure 3.16. The

muon spectrometer provides stand alone tracking efficiency of over 90% for muons

above 10 GeV, with a resolution of roughly 4% up to 150 GeV. The factors that go

into the momentum resolution are shown in Figure 3.17. Below 10 GeV, many muons

do not make it through the calorimeter (where they lose, on average, 4 GeV) or are

bent out of the fiducial volume of the detector by the 4 T field from the toroidal

magnets. Between 10 GeV and 20 GeV, the resolution is dominated by energy loss

in the calorimeter and other material. Between 20 GeV and roughly 200 GeV, the

resolution is dominated by multiple scattering. Finally, very high pT muon resolution

is dominated by hit resolution, which is primarily due to misalignments. At nominal

alignment, the expected resolution of the muon spectrometer is 10% is 1 TeV. A

measurement from data of the muon resolution using Z → µµ decays is presented

as part of this analysis. Finally, it is also worth noting the structure in η. Near

|η| = 0, performance is reduced by a gap in the muon spectrometer for services.

In the transition region near |η| = 1.3, performance is reduced due to the spacing

between the endcap and barrel, as well as poor bending power in the region between

the endcap and barrel toroids.

3.5.1 Monitored Drift Tubes

As will be discussed in section 3.6, the bending direction in the Muon Spectrometer

is in η, which makes a very precise measurement of the particle trajectory in η crucial

to measuring muon momentum at high pT . Monitored Drift Tubes (MDT) are used

over almost all of the coverage to perform this measurement. Each tube is made of
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Figure 6: Standalone efficiency and fake rate as functions of true η for Muonboy (left) and
Moore/Muid (right) for direct muons in tt̄ at low (top) and high (bottom) luminosity. In the effi-
ciency plots, the upper curve (blue) is the efficiency to find the muon while the lower curve (green)
additionally requires a good match (Deva < 4.5) between reconstructed and true track parameters.
Fake rates are shown for a variety of pT thresholds.

MUONS – MUON RECONSTRUCTION AND IDENTIFICATION: STUDIES WITH SIMULATED . . .

172

(a) Efficiency as a function of η
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Figure 15: Low-pT muon finding efficiencies for combined muons alone and combined plus
tagged for the Staco (left) and Muid (right) collections. Results are show for the tt̄ indirect se-
lection. The other samples show similar behavior but have much poorer statistics at low-pT . The
efficiency is calculated for muons with |η | < 2.5.

events, for muons from W → µν with |η | < 2.5, the Staco combined muon efficiency is 94% with most
of the loss coming from regions of the spectrometer where the detector coverage is thin. The efficiency
falls by a few percent when the muon transverse momentum reaches the TeV scale where it is much
more likely that a muon will radiate a substantial fraction of its energy. The tt̄ rate for fakes is a few per
thousand events for pT > 20 GeV/c and this can be reduced by an order a of magnitude (with a 2% loss
in efficiency) by cutting on the muon quality (χ2

match). The performance of the Muid algorithm is only
slightly worse for tt̄ but it is significantly less robust, losing additional efficiency at low-pT and high-pT

and when luminosity background is added.
The combined muons can be supplemented with the standalone muons to extend the η coverage to

2.7 and to recover the percent or so efficiency loss in combination. We do not report on this merge
but it is clear from the standalone results that the fake rates will increase significantly especially when
luminosity background is present. In the case of Moore, the fake rate is likely intolerable.

We find that merging with MuTag provides only slight improvement to the Staco efficiency with a
significant increase in fakes. This may reflect the success of Staco more than deficiencies in MuTag.
MuGirl is able to improve the Muid efficiency, so that the merge Muid+MuGirl has performance similar
to Staco or Staco+MuTag. By itself, the MuGirl efficiency is somewhat less than that of Staco especially
for high-pT muons, and the fake rates are substantially higher.

10.2 Future

The results presented here reflect the status of the ATLAS software used to reconstruct (Monte Carlo)
production data in 2007. Work continues both to improve the algorithms described here and to add
new ones. The high-luminosity fake rate for Moore is being addressed by introducing timing cuts and
investigating alternative approaches to the pattern recognition. The latter also has the goal of reducing the
number of false hit assignments. Combined muons with large χ2

match are being studied to see if a second
stage of pattern recognition can reduce the efficiency loss or resolution tails. Efforts are underway to
improve or replace the existing spectrometer-tagging algorithms; in particular, code is already in place
to extrapolate to additional stations enabling recovery of much of the standalone/combined efficiency
loss near |η | = 1.2. Two calorimeter-tagging algorithms have been developed and offer the possibility
of recovering much of the efficiency loss near η = 0. Improvements in modularity will make it possible
to mix components from the different algorithms, (e.g. to use Muid to combine Muonboy muons) and
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(b) Efficiency as a function of pT
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Figure 7: Standalone fractional momentum resolution (∆pT /pT ) as function of η (top) and pT

(2nd row) and tails in that parameter also as functions of η (3rd row) and pT (bottom). All are for
both Muonboy (left) and Moore/Muid (right). The tail is the fraction of reconstructed muons with
magnitude of ∆pT /pT outside a range and is shown for a wide range of values. The last tail curve
(red, “charge”) includes only muons reconstructed with the wrong charge sign. The 4th tail curve
(yellow, “2X high”) includes these and those with momentum magnitude more than two times the
true value.
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(c) Muon pT resolution as a function of η
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Figure 7: Standalone fractional momentum resolution (∆pT /pT ) as function of η (top) and pT

(2nd row) and tails in that parameter also as functions of η (3rd row) and pT (bottom). All are for
both Muonboy (left) and Moore/Muid (right). The tail is the fraction of reconstructed muons with
magnitude of ∆pT /pT outside a range and is shown for a wide range of values. The last tail curve
(red, “charge”) includes only muons reconstructed with the wrong charge sign. The 4th tail curve
(yellow, “2X high”) includes these and those with momentum magnitude more than two times the
true value.
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(d) Muon pT resolution as a function of pT

Figure 3.16: Nominal standalone performance of the ATLAS muon spectrometer [10].
In the efficiency plots, a good muon is one passing standard quality cuts.
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Figure 4: Contributions to the momentum resolution for muons reconstructed in the Muon Spec-
trometer as a function of transverse momentum for |η | < 1.5. The alignment curve is for an
uncertainty of 30 µm in the chamber positions.

and muon spectrometer may be combined to give precision better than either alone. The inner detector
dominates below this range, and the spectrometer above it.

3 Overview of reconstruction and identification algorithms

ATLAS employs a variety of strategies for identifying and reconstructing muons. The direct approach is
to reconstruct standalone muons by finding tracks in the muon spectrometer and then extrapolating these
to the beam line. Combined muons are found by matching standalone muons to nearby inner detector
tracks and then combining the measurements from the two systems. Tagged muons are found by ex-
trapolating inner detector tracks to the spectrometer detectors and searching for nearby hits. Calorimeter
tagging algorithms are also being developed to tag inner detector tracks using the presence of a mini-
mum ionizing signal in calorimeter cells. These were not used in the data reconstruction reported here
and their performance is documented elsewhere [2].

The current ATLAS baseline reconstruction includes two algorithms for each strategy. Here we
briefly describe these algorithms. Later sections describe their performance.

The algorithms are grouped into two families such that each family includes one algorithm for each
strategy. The output data intended for use in physics analysis includes two collections of muons—one
for each family—in each processed event. We refer to the collections (and families) by the names of the
corresponding combined algorithms: Staco [3] and Muid [4]. The Staco collection is the current default
for physics analysis.

3.1 Standalone muons

The standalone algorithms first build track segments in each of the three muon stations and then link the
segments to form tracks. The Staco-family algorithm that finds the spectrometer tracks and extrapolates
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Figure 3.17: Factors influencing standalone muon resolution [10].
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aluminum with a diameter of 30 mm, a wall thickness of 400 µm, and a variable length

from 70 cm to 6.3 m depending on the location. At the center of each tube a wire of

50 µm W-Re is run and held at a nominal voltage of 3 kV. The tubes are filled with

a constantly circulated gas mixture of 93% Argon and 7% CO2 held at 3 bar absolute

pressure, which yields a nominal maximum drift time of 700 ns. Charged particles

incident on a tube ionize the gas mixture, and the electrons are driven by the charged

wire. The readout electronics are used to measure the total deposited charge as well

as the time of the leading pulse. The charge information is used to suppress noise,

while the timing information is converted to a drift radius based upon calibrated RT

relations, providing a single hit resolution of ∼ 80 µm. As there is no information

along the length of the wire, second coordinate information is added during pattern

matching using information from the trigger chambers described in the next sections.

Individual tubes are constructed into chambers, an example of which is shown

in Figure 3.18. Each chamber consists of a support structure surrounded on both

top and bottom by three or four layers of tubes depending on the location. Tubes

within neighboring layers are staggered by half a tube in order to reduce ambiguity

in pattern matching. Optical alignment is used within the support structure of a

single chamber in order to monitor for deformations and between chambers using

sensors and patterns mounted to the surface of chambers in order to monitor inter-

chamber alignment. The ultimate alignment goal is 30 µm within a projective tower

of chambers.
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1    Overview  9

To improve the resolution of a chamber be-
yond the single-wire limit and to achieve ade-
quate redundancy for pattern recognition, the
MDT chambers are constructed from 2 ! 4
monolayers of drift tubes for the inner and
2 ! 3 monolayers for the middle and outer sta-
tions. The tubes are arranged in multilayers of
three or four monolayers, respectively, on ei-
ther side of a rigid support structure
(Figure 1-9). The support structures (‘spacer
frames’) provide for accurate positioning of
the drift tubes with respect to each other, and
for mechanical integrity under effects of tem-
perature and gravity; for the barrel chambers
which are not mounted in a vertical plane,
they are designed to bend the drift tubes
slightly in order to match them to the gravita-
tional sag of the wires. The spacer frames also
support most of the components of the align-
ment system.

Figure 1-9  Schematic drawing of a rectangular MDT chamber constructed from multilayers of three monolayers
each, for installation in the barrel spectrometer. The chambers for the end-cap are of trapezoidal shape, but are
of similar design otherwise.

Figure 1-8  Measured (circles) and simulated (line)
MDT single-wire resolution as a function of the drift
distance

Distance from wire (mm)

R
M

S 
re

so
lu

tio
n 

(µ
m

)

50 µm wire
Threshold at 5 ! noise
Shaping time 15 ns

GARFIELD simulation
Measurement

Longitudinal beam
In-plane alignment

Multilayer
Cross plate

Figure 3.18: A diagram of a typical ATLAS MDT Chamber [21].

Chambers are then formed into the barrel and endcap muon spectrometers, ac-

cording to the pattern shown in Figure 3.19. In the barrel (|η| < 1.0), chambers are

arranged in three layers at fixed R values of roughly 5 m, 7.5 m, and 10 m. As shown

in Figure 3.19(b), there is slight overlap between adjacent chambers in the same layer,

which provides full coverage in φ except for some small regions at the bottom of the

detector which are used for support structure. In addition, there is a small gap at

η = 0 for services and cables.

In the end-cap from |η| = 1 to |η| = 2.7, chambers are arranged into a wedge shape

called a sector, shown in Figure 3.20, and sectors are formed into a wheel, shown in

Figure 3.21. Four wheels per side are placed at roughly z = 7m, 10m, 14m, and 22m,

and are concentric with the beam axis, as shown in Figure 3.19(a). Note that in the
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Figure 3.19: Chamber layout of the ATLAS Muon Spectrometer [21].
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Figure 3.20: A picture of an assembled ATLAS Muon Spectrometer End-cap Sector,
along with support structures [1].

inner most wheel, for |η| > 2.0, the MDTs are replaced with CSCs, which will be

described in the section 3.5.2.

3.5.2 Cathode Strip Chambers

In the inner layer of the far forward region ( 2.0 < |η| < 2.7 ), the large particle

flux results in occupancy levels of MDT chambers that are untenable. Instead, in

this region, Cathode Strip Chambers are used, which provide both precision and

second coordinate information. The detector element of a CSC resembles a multiwire

proportional chambers and is shown in Figure 3.22. Cathode strips with a readout

pitch of 5.08 mm are located 2.54 mm from a series of anode wires with 2.54 mm

pitch. The wires are held at high voltage and the gap filled with a mixture of 30% Ar,
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Figure 3.21: A picture of an ATLAS Muon Spectrometer End-cap Wheel [1].
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6  Cathode strip chambers

 

6.1  Principles of operation and performance

 

The monitored drift tubes are well suited to meet the requirements for the precision measure-
ment of muons in ATLAS. They can cover most of the 5500 square metres of the muon spec-
trometer with economically produced chambers while providing the required spatial
resolution. Their rather large diameter and high operating pressure, however, make them un-

 

suitable for use in areas where high (> 200 Hz/cm

 

2

 

) counting rates are expected. In ATLAS, be-
cause of the integrated forward calorimeter, such high background rates are encountered in the

 

first muon measuring station at pseudorapidities |

 

!

 

|> 2.0. In this region of the spectrometer,
Cathode Strip Chambers (CSCs) are used. These are multiwire proportional chambers with a
cathode strip readout which, by charge interpolation, provides the required spatial resolution of
80 

 

µ

 

m. We summarize here the basic characteristics of the CSCs: 

• Excellent single layer track resolution; a sigma of 

 

"

 

 60 

 

µ

 

m has been measured in several
prototypes.

• Good two-track resolution; nominal single-track resolution is achieved for each of a pair
of tracks separated in the bend direction by more than approximately one strip (5 mm in
the ATLAS design).

• Electron drift time less than 30 ns resulting in an r.m.s. timing resolution of 7 ns. By de-
tecting the earliest arrival from four or more of the eight layers, r.m.s. resolutions of 3.5 ns
have been measured in a test beam providing a fully efficient bunch-crossing identifica-
tion.

• Low neutron sensitivity; because of the small gas volume and the absence of hydrogen in
the operating gas (Ar/CO

 

2

 

/CF

 

4

 

 mixture), the measured neutron sensitivity is less than
10

 

-4

 

. The sensitivity to photons was also measured and found to be of the order of 1%.

• The transverse coordinate is derived by reading orthogonal strips on the second cathode
of the chamber. 

 

6.1.1  Signal formation, operating parameter optimization

 

The CSCs are multiwire proportional cham-
bers with a symmetric cell in which the an-
ode-cathode spacing d is equal to the anode
wire pitch S, which has been fixed at 2.54 mm
in view of the required performance
(Figure 6-1). The cathode readout pitch W is
5.08 mm. In a typical multiwire proportional
chamber the anode wires are read out limiting
the spatial resolution to an r.m.s. of . In
a CSC the precision coordinate is obtained by
measuring the charge induced on the seg-
mented cathode by the avalanche formed on
the anode wire. The induced charge distribu-

Figure 6-1  Schematic diagram of the cathode strip
chamber

Anode wires

Cathode
strips

d

d

WS

         S 12⁄
Figure 3.22: A diagram of an ATLAS Cathode Strip Chamber detector element [21].

50% CO2, and 20% CF4. Incident charged particles induce ionization which causes an

avalanche to form on the anode wires and a charge to be induced on the cathode stripe

readout. Charge is spread between neighboring strips, and interpolation allows a hit

resolution of roughly 60µm. Short drift distances result in drift times of approximately

30 ns with a resolution of roughly 7 ns.

The CSCs replace the MDTs in the high η region of the inner MDT wheel. Two

orthogonal layers are placed back to back in order to provide second coordinate in-

formation. As the geometry of the CSCs is such that they give best resolution when

the incident particle is normal to the detector plane, the CSC layers are tilted with

respect to the vertical, as shown in Figure 3.19(a).
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3.5.3 Resistive Plate Chambers

Resistive plate chambers (RPC) are used to provide triggering and second coordi-

nate information in the barrel ( |η| < 1.0 ). An RPC detector element consists of

a pair of 2 mm resistive parallel bakelite plates forming a 2 mm gap which is filled

with a mixture of tetrafluoroethane (C2H2F4) and SF6. A strong electric field (typ-

ically 4.5 kV/mm) is applied which causes primary ionization electrons to produce

an avalanche, which in term produces a signal in the readout electronics. A detector

element typically provides space-time resolutions of 1 cm × 1 ns.

Individual RPC strips are built into chambers with 2 pairs of overlapping layers of

η strips (those parallel to the MDTs) and φ strips (those perpendicular to the MDTs).

Three layers of RPC chambers are then sandwiched against the MDT chambers are

shown in Figure 3.19(b). In particular, RPC chambers are placed on the inner and

outer faces of the middle barrel MDT layers, along with a third layer attached the

the outer MDT barrel layer.

3.5.4 Thin Gap Chambers

Thin Gap Chambers (TGC) are used to provide triggering and second coordinate

information in the end-cap (1.0 < |η| < 2.4). The TGCs are designed as a multiwire

proportional chamber with a wire-to-wire distance larger than the wire to cathode

distance. A pair of graphite cathodes are spaced 2.8 mm apart with a series of 50 µm

wires run at a spacing of 1.8 mm down the middle of the gap. The wires are held at

a voltage of approximately 3 kV, and the gap filled with a mixture of 55% CO2 and
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45% n-pentane (n-C5H12). Incident particles produce ionization in the gap which is

drifted by the electric field of the anode wire. The small drift distance yields a very

fast response, while segmentation of the cathode readout perpendicular to the wire

configuration allows the second coordinate to be measured.

TGC chambers consist of multiple layers of detector elements layered with a sep-

arating honeycomb structure. As with the MDTs, chambers are built into sectors

and then wheels which are attached flush against the MDT wheels as shown in figure

3.19(a). The inner layer consists of a single doublet of detector elements and is used

only for second coordinate measurements. The middle layer consists of a triplet and

two doublets which provide both triggering and second coordinate information during

pattern matching.

3.6 Magnet System

The ATLAS magnet system is based around a solenoid providing bending power for

the ID and three air core toroids providing bending power for the Muon Spectrometer.

The solenoid system provides a central field of 2 T with a peak field of 2.6T, while the

toroids provide a 3.9 T peak field in the barrel and a 4.1 T peak field in the end-cap.

The resulting bending power as characterized by
∫
Bd` is 2 to 6 Tm in the barrel and

4 to 8 Tm in the end-cap. A list of the properties of the magnet system is shown in

Table 3.4.
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Property Solenoid Barrel Toroid End-cap Toroid

Inner diameter [ m ] 2.44 9.44 1.65
Outer diameter [ m ] 2.63 20.1 10.67

Length [ m ] 5.3 25.3 5
Total Weight [ tons ] 5.7 830 239

Number of coils 1 8 8
Turns per coil 1173 120 116
Current [ kA ] 7.6 20.5 20

Stored Energy [ MJ ] 38 1080 206
Peak Field [ T ] 2.6 3.9 4.1

Table 3.4: Properties of the ATLAS Magnet System [24].

3.6.1 Solenoid

The central solenoid is made of 1173 turns of Al/Cu/NbTi superconducting cable

running between the ID and the EM Calorimeter. This generates a very strong and

uniform field parallel to the z axis, which results in bending of charged particles in the

φ direction. It is cooled by a flowing helium at 4.5 K through tubes welded onto the

windings. As the resolution of the calorimeter is heavily dependent on the amount

of material between it and the interaction point, extreme effort has been made to

minimize the amount of material in the solenoid. In particular, the LAr calorimeter

and solenoid share a single vacuum vessel while the coil itself is designed to be as thin

as possible. A picture of a test insertion of the solenoid into its resting place inside

the EM calorimeter is shown in Figure 3.23.

3.6.2 Toroids

The toroids are designed to provide sufficient bending power for the ATLAS muon

spectrometer to measure the momentum of a 1 TeV muon to 10%. Despite the high
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Figure 3.23: A picture of a test insertion of the ATLAS solenoid into the ATLAS EM
Calorimeter [1].

precision of the ATLAS MDTs, the required bending is of the order of a few T ·m. For

lower pT measurements, however, it is desirable to reduce the amount of material in

the muon spectrometer, so as to reduce the effects of multiple scattering. The result

is a set of air core toroids that provide a strong magnetic field over a large bending

volume.

There are three air core toroid magnets in the ATLAS magnet system which provide

bending power for the muon spectrometer: a single barrel toroid and two end-cap

toroids. All three toroids consist of eight coils assembled symmetrically around the

beam axis. This configuration produces a magnetic field in φ and therefore bending

in η. A picture of the barrel toroid is shown in Figure 3.24, and a picture of the

end-cap toroid is shown in Figure 3.25. The bending power as a function η is shown
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Figure 3.24: A picture the ATLAS Barrel Toroid with support structure [1].

in Figure 3.26.

The barrel toroid encloses the middle layer of the barrel MDTs, as shown in Figure

3.19(b), while the end-cap toroid is located between the inner and middle MDT end-

cap layers, as shown in Figure 3.19(a). Thus, in the barrel bending occurs over the

range between the inner and outer layers, while bending in the end-cap only occurs

between the inner and middle layers. In the transition region between the barrel and

end-cap ( roughly |η| = 1.0 to |η| = 1.4 ) the field becomes a very complicated super-

position of the fields due to the end-cap and barrel toroids. In particular, the bending

power,
∫
Bd`, becomes small or even negative in some regions of the transition re-

gion. To somewhat reduce this effect, the coils of the end-cap toroid are rotated at

22◦ relative to the coils of the barrel toroid.
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Figure 3.25: A picture the ATLAS End-cap Toroid [1].
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Figure 2: ATLAS muon spectrometer integrated magnetic field strength as a function of |η |.

Figure 3: Number of detector stations traversed by muons passing through the muon spectrometer
as a function of |η | and ϕ .
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Figure 3.26: Bending power as a function η of the ATLAS toroid magnets [10].

3.7 Combined Muon Tracking

The design of the ATLAS detector provides particularly good measurements of

muon properties due to the ability to perform muon tracking in both the inner de-

tector and the muon spectrometer. Muons are identified by matching inner detector

tracks to calorimeter clusters matching the properties of minimum ionizing particles

(calorimeter tagged muons), by matching inner detector tracks to segments in a single

chamber of the muon spectrometer (segment tagged muons), or by matching inner

detector tracks to tracks in the muon spectrometer (combined muons). Calorimeter

tagged muons are useful for muons in the very low pT range (< 5 GeV) which do not

always make it through the calorimeter. Segment tagged muons are useful in the low

pT range (< 10 GeV), where muons tend to make it through the calorimeter but can

be swept out of the spectrometer acceptance due to the magnetic field. They are also
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useful for recovering efficiency in regions where services or support structures block

the inclusion of all three layers of the muon spectrometer. Finally, combined muons

provide the best resolution with the lowest fake rate and thus are the best choice

when tagged muons are not necessary. As this analysis uses high pT , high quality

muons, only combined muons are used.

Combined muons can be formed in a number of different ways. When an inner de-

tector track and a muon spectrometer track are matched, the entire track may be refit

using the hits of both sub-tracks. Alternatively the track parameters of the combined

track may be determined by performing a χ2 minimization using the inner detector

and muon spectrometer tracks as inputs, thus forming combined parameters which

are a weighted sum of the sub tracks. While ATLAS uses both pattern recognition

techniques, due to technical issues with the implementation of the first technique,

this analysis uses only the second technique.

Measuring the muon momentum and track parameters twice using both the inner

detector and the muon spectrometer has a number of beneficial properties. First,

by comparing the two sub track properties, it was possible to perform calibration

and resolution measurements using only cosmic rays. Second, each sub-detector has

peak performance in different pT regimes, which greatly improves the resolution of

the combined track. At relatively low pT (less than roughly 40 GeV), the momentum

measurement of the muon is dominated by multiple scattering and energy loss due to

material. As the inner detector has much less material in front of it than the muon

spectrometer, it provides the best resolution measurement in this range. However,
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at higher pT , the dominant uncertainty comes from the measurement of the muon

curvature. As the muon spectrometer air core toroids have very large bending power

due to the large field and bending distance, and the MDT’s have very good resolution,

the muon spectrometer provides the best resolution measurement at high pT .

The performance of combined muons is shown in Figure 3.27. Combined tracking

alleviates some of the problems seen in standalone tracking, shown in Figure 3.16.

Although there is still a noticeable efficiency drop in the crack region near |η| = 0

and the transition region near |η| = 1.4, the resolution in the those regions is much

better. Further, the performance at low pT is much improved due to the inclusion of

the inner detector.

3.8 Trigger

The ATLAS trigger is designed around a three tiered real time event filtering system

that reduces the event rate from the nominal collision rate of 40 MHz to a write to

tape rate of roughly 200 Hz. The first tier, called level 1, is implemented as hardware

pattern matching, which gives it very fast computation speed and low latency. The

second tier, called level 2, consists of a dedicated cluster of commodity computers

running simplified versions of the tracking and pattern matching algorithms used in

reconstruction on subsets of the total detector data for the event. The final tier, called

the event filter, is run on a larger cluster of commodity computers and is responsible

for running reconstruction on the full event in order to provide a final acceptance or

rejection of the event.
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Figure 9: Combined muon efficiency and fake rate for Staco (left) and Muid (right) as functions
of true η for direct muons in tt̄ at low (top) and high (bottom) luminosity. In each efficiency plot,
the upper curve (blue) is the efficiency to find the muon while the lower curve (green) addition-
ally requires a good match (Deva < 4.5) between reconstructed and true track parameters. The
efficiencies are for pT > 10 GeV/c. Fake rates are shown for a variety of pT thresholds.
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(a) Efficiency as a function of η
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Figure 11: Combined muon fractional momentum resolution (∆pT /pT ) as function of η (top) and
pT (2nd row) and tails in that parameter also as functions of η (3rd row) and pT (bottom). All
are for both Staco (left) and Muid (right). The tail is the fraction of reconstructed muons with
magnitude of ∆pT /pT outside a range and is shown for a wide range of values. The last tail curve
(red, “charge”) includes only muons reconstructed with the wrong charge sign. The 4th tail curve
(yellow, “2X high”) includes these and those with momentum magnitude more than two times the
true value.
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(b) Muon pT resolution as a function of η
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Figure 11: Combined muon fractional momentum resolution (∆pT /pT ) as function of η (top) and
pT (2nd row) and tails in that parameter also as functions of η (3rd row) and pT (bottom). All
are for both Staco (left) and Muid (right). The tail is the fraction of reconstructed muons with
magnitude of ∆pT /pT outside a range and is shown for a wide range of values. The last tail curve
(red, “charge”) includes only muons reconstructed with the wrong charge sign. The 4th tail curve
(yellow, “2X high”) includes these and those with momentum magnitude more than two times the
true value.
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(c) Muon pT resolution as a function of pT

Figure 3.27: Nominal combined performance of the ATLAS muon spectrometer [10].
In the efficiency plot, a good muon is one passing standard quality cuts.
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3.8.1 Level 1 Trigger

The level 1 trigger is responsible for reducing the nominal collision rate of 40 MHz

to a front end electronics readout rate limited accept rate of 75 kHz with a latency of

less than 2.5 µs. It does this by performing hardware pattern matching with a subset

of the available detector data. High transverse momentum muons are identified using

RPCs in the barrel and TGCs in the end-caps. Hits within a projective road in η and

φ are compared with pre-computed patterns to determine the muon pT threshold. In

the calorimeter, energy and trajectories are determined by a sliding window algorithm

which reduces the granularity of the detector. As with the muons, the results are used

to form thresholds passed by the objects. The total energy and missing energy are

computed by summing over the calorimeter towers.

In addition to identifying events of interest, the level 1 trigger also determines the

bunch crossing as well as Regions of Interests (RoIs), where there is activity that

caused a trigger to be passed, which are crucial for the level 2 trigger. During the

level 1 accept latency, the readout of the detector is buffered in pipeline memories on

the front end readout electronics. As the total amount of information is very large

(roughly 107 channels per 25 ns of buffering time), it is crucial that the level 1 latency

be kept as low as possible.

3.8.2 Level 2 Trigger

Once an event is selected by the level 1 trigger, the detector data is moved from

the front end pipelines to roughly 1700 read out buffers (ROBs), which store the data
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during the level 2 latency. The level 1 trigger then indicates to the level 2 trigger

the RoIs in the event, and the level 2 reads out the data from the ROBs for those

regions. This readout strategy dramatically decreases the amount of data that must

be moved and processed by the level 2.

The level 2 trigger is then responsible for reducing the event rate from the level 1

accept rate of 75 kHz to a level 2 accept rate of roughly 1 kHz. The level 2 trigger

operates with the full granularity of the detector, but only on the RoI’s identified

by the level 1 trigger. In both muon and calorimeter triggers, this results in a much

sharper pT measurement, yielding a steeper trigger turn on curve. For muons, the

level 2 trigger achieves this by adding measurements of the muon pT from the MDTs

as well as from the ID. For electrons, hadrons, and taus, performance is gained by

using the full granularity of the calorimeter combined with track matching from the

ID. Minor refinements can be made to photons, jets, and energy sum triggers by using

the full calorimeter resolution as well as more sophisticated calibrations.

3.8.3 Event Filter

Following a level 2 accept, the full event data is moved from the ROBs to the final

trigger stage, called the Event Filter (EF), in a process known as event building. The

EF uses the full detector information and runs offline reconstruction algorithms in

order to reduce the final accept rate to roughly 200 Hz. Events accepted by the EF

are then recorded for offline processing and made part of the ATLAS data set.
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3.8.4 Trigger Menu and Performance

The trigger rate compared with cross sections for common physics processes at

nominal running conditions is shown in Figure 3.28. At nominal conditions, even

W and Z events must be prescaled in order to accommodate the very high rate of

production. During 2010, production rates were much lower due to the lower center

of mass energy and the factor of 50 lower instantaneous luminosity. The rate of

muon triggers expected at instantaneous luminosity of 1031 cm−2 s−1 (20 times lower

than what was achieved in 2010) is shown in Figure 3.29. To accommodate the

trigger budget by stream, shown in Figure 3.30, the main muon physics trigger for

2010 required a threshold of 13 GeV, which yields a rate of roughly 20 Hz. Trigger

performance, in both the muon and electron channels, was measured in data using

Z → `` decays and will be presented as part of this analysis.



Chapter 3: Detector 67

Figure 1: Expected event rates for several physics processes at the LHC design luminosity.

2 Level 1 trigger

The Level 1 trigger system receives data at the full LHC bunch crossing rate of 40 MHz and must make
its decision within 2.5 µs to reduce the output rate to 75 kHz (∼40 kHz during ATLAS start-up). The
L1 trigger has dedicated access to data from the calorimeter and muon detectors. The L1 calorimeter
trigger [5] decision is based on the multiplicities and energy thresholds of the following objects observed
in the ATLAS Liquid Argon [6] and Tile [7] calorimeter sub-system: Electromagnetic (EM) clusters,
taus, jets, missing transverse energy (/ET ), scalar sum ET (∑ET ) in calorimeter, and total transverse
energy of observed L1 jets (∑ET (jets)). These objects are computed by the L1 algorithms using the
measured ET values in trigger towers of 0.1×0.1 granularity in ∆η ×∆φ . The L1 muon trigger [8] uses
measurement of trajectories in the different stations of the muon trigger detectors: the Resistive Plate
Chambers [9] (RPC) in the barrel region and the Thin Gap Chambers [8] (TGC) in the endcap region.
The input to the trigger decision is the multiplicity for various muon pT thresholds.

There are a limited number of configuration choices that are available at L1. The most common
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Figure 3.28: ATLAS trigger rate in comparison with various physical processes at
nominal running conditions [10].
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Figure 3: Estimated muon trigger rate for a luminosity of 1031 cm−2 s−1. Shown are the total rates and
various contributions.

Signature tau6 tau9I tau11I tau16I tau25 tau25I tau40
Prescale 750 300 1500 10000 20 10 1
Rate (Hz) 19 16 2 < 0.1 16.1 25 83
Signature 2tau6 2tau9I 2tau16I tau6 tau16I tau9I EM13I tau9I MU6 tau9I XE30
Prescale 100 1 1 10 1 1 1
Rate (Hz) 19 413 65 46 100 25 160

Table 6: L1 trigger items and estimated rates at 1031 cm−2 s−1 for tau objects.

Trigger Item XE15 XE20 XE25 XE30 XE40 XE50 XE70 XE80
Prescale 30000 7000 1500 200 20 2 1 1
Rate (Hz) 2.5 3 4 7.5 7.5 14 2 1

Table 7: L1 trigger items and estimated rates at 1031 cm−2 s−1 for Missing ET objects.
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Figure 3.29: Expected muon trigger rates at instantaneous luminosity of 1031 cm−2

s−1 [10]. Note that 2010 saw a maximum instantaneous luminosity of 2× 1032 cm−2

s−1, 20 times what is shown here.

total rates estimated for all single and multi-electron triggers including triggers executed with prescale
factors and in pass-through mode. “B-Physics and Topological” refers primarily to B-physics triggers
and other triggers where invariant mass cuts have been applied during the selection process, such as in
selection of J/ψ , ϒ , and Z decays. The “Other Topological” triggers require two or more object types,
such as e+ jets, τ + /ET etc.

The trigger grouping and associated rates are shown in finer detail in Table 11 for each of the trigger
levels. The rates for each trigger grouping accounts for overlaps between signatures in that group, but not
across groups. The “Total” row gives the cumulative rates for this trigger menu, accounting for overlaps
between the trigger groups as well. The total output rates for each trigger level, for the proposed trigger
menu at a luminosity of 1031 cm−2 s−1, is estimated to be within the available bandwidth, although
there are large uncertainties inherent in the simulation. The estimated rate out of L1/L2 is 12 kHz/620
Hz well below their respective targets of 40 kHz and 1 kHz available during the LHC startup phase.
The selections have been tuned to yield the targeted EF output rate of 200 Hz, but it is evident that this
preliminary trigger list will need to be optimized based on early experience with real data.

7 Data streams

ATLAS has adopted an inclusive streaming model whereby raw data events can be streamed to one or
more files based on the trigger decision. A proposed initial streaming configuration consists of four raw
data streams called egamma, jetTauEtmiss, muons, and minbias. Each stream consists of events that pass
one or more trigger signatures. The stream names indicate the type of trigger signatures they will contain,

Rate (Hz)
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Figure 4: HLT unique (black) and cumulative (gray) estimated rates at 1031 cm−2 s−1 for different trigger
groups as described in the text.
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Figure 3.30: Nominal trigger budget by stream for 2010 running [10].
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Software

ATLAS employs a complex and sophisticated software framework in order to record,

reconstruct, and analyze data. In general, offline software is divided into production,

which is typically run and maintained centrally, either or on the grid or at the CERN

computing facility, and analysis, which is typically run and maintained by individual

users or groups on their local computing facilities. In section 4.1, a brief overview of

the ATLAS computing model is given. In sections 4.2 and 4.3 four software packages

related to trigger, performance, and analysis are highlighted. Note that these sections

contain implementation details that are not essential to a general understanding of

the analysis.

4.1 ATLAS Computing Model

The ATLAS computing model [22] describes the development of the software and

hardware required to efficiently reconstruct and distribute data recorded by the AT-

69
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LAS detector. The software consists of all so-called offline software which is run after

the data has been read out of the detector and recorded to disk, as opposed to the

software which runs the trigger system and is run in real time (and so called online).

The hardware consists of a distributed tiered system involving computing resources

at institutes and universities around the world, which is tied together by a cloud

computing system known as the LHC Computing Grid (LCG) [62].

Data read out from the detector is subject to a number of additional processing

steps, each of which produces derived datasets with a different format and information

content. Events selected by the Event Filter, described in section 3.8, are recorded

in the RAW format, which consists simply of the byte-stream style output of the

subdetectors without an object oriented representation, and is roughly 2 MB/event.

Reconstruction, which uses pattern matching algorithms to convert energy depositions

and hits to particle trajectories, is then run on the RAW data and produces Event

Summary Data (ESD) and Analysis Object Data (AOD) data files. The ESD format

is roughly 500 kB/event, and consists of all needed information for physics analysis

(such as basic object information), as well as more in depth information about detector

hits and energy depositions needed for calibration and performance measurements.

The AOD format is roughly 100 kB/event and contains basic information needed for

physics analysis. Typically analysis or analysis group specific ntuples are produced

of varying size and detail from the ESDs and AODs for final processing.

To provide the facilities for processing, storing, and distributing ATLAS data, a

tiered cloud based system known as the grid is used. ATLAS computing resources are
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located at institutional and university facilities around the world, and each facility is

assigned to a tier based upon available resources. The ATLAS experiment has a single

Tier 0 site, located at CERN, which is responsible for storing and distributing the

RAW data read out from the detector, as well as performing first pass reconstruction.

For each region (typically a continent or large country), a Tier 1 facility is responsible

for storing the derived ESD and AOD datasets and providing computing resources

for reprocessing of the RAW data and analysis of the hosted data. Tier 2 facilities are

generally more specialized facilities that offer region specific computing and storage

needs for things such as simulation, calibration, and analysis. Finally, Tier 3 facilities

are usually dedicated the analysis needs of a given university or institution. An

example facility for each tier is shown in Table 4.1.

Facility Type Location Approximate Storage Approximate CPU

Tier 0 CERN 4 PB disk / 9 PB tape 14k cores
Tier 1 BNL 5 PB disk / 3 PB tape 12k cores
Tier 2 Harvard/BU 500 TB disk 2,200 cores
Tier 3 Harvard 130 TB disk 300 cores

Table 4.1: Example computing facilities for each tier level at CERN, Brookhaven
National Lab (BNL), Harvard, and Boston University (BU).

4.2 Production Software

In ATLAS, production software refers to software that is run and maintained cen-

trally (either at the Tier 0 or on the grid) in order to satisfy certain requirements of the

collaboration, and includes software for doing reconstruction, data preparation and

validation, and simulation. This section highlights three pieces of production software:

TrigNavigationSlimming, which is used to reduce the trigger information for derived
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dataset production; TriggerObjectMatching, which is used to associated offline and

online objects for analysis and derived dataset production; and MuonIDNtupleMakers,

which produces derived datasets for muon performance studies.

4.2.1 Trigger Navigation Slimming

During reconstruction, the full information about the state of the trigger is recorded

in a tree structure called the trigger navigation. A simple example of the trigger

navigation is shown in Figure 4.1. For each event, a tree is built with a node whose

daughters correspond to each Region of Interest found at level 1 (see section 3.8).

The daughter of each node, then, represents the seeded algorithms for that RoI. For

example, the muon trigger might start with an algorithm that builds a track in the

inner detector. If a track is found with sufficient pT and quality within the Rol, that

algorithm will seed another algorithm that searches for a muon track in the muon

spectrometer, and assuming that is successful, another algorithm which combines

them. In this way, each node of the tree represents a trigger algorithm that was run

at some stage of the trigger. Further, each node contains information about the result

of the algorithm and the full properties of the reconstructed object.

While this information is very useful for everything from trigger debugging and

validation to analysis, it is also very costly to store. On average, the trigger navigation

information is roughly 10 kB/event, and can be much larger for complicated events.

Compared with the design size of 100kB/event for AODs, this is simply too large to

store for analysis. Further, much of the information is not necessary at every step:

intermediate nodes, for example, might be unnecessary for calculating the trigger



Chapter 4: Software 73

efficiency of a given object. The TrigNavigationSlimming algorithm [68] is designed

to remove trigger elements and features from the navigation structure during derived

dataset production in order to reduce size and remove corrupted elements from the

data file.

Figure 4.1: A simple example of the trigger navigation structure. Each grey box
represents another step in the trigger algorithm.

A high degree of flexibility and customization is crucial to the trigger navigation

slimming package in order to allow it to be used for a variety of derived datasets. This
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list of possible options is provided in Table 4.2. Trigger algorithms to be saved or

removed can be specified in a number of ways. Streams include the output of specific

subdetector triggers, such as the muon or calorimeter streams. Groups refer to similar

physics based triggers, such as the group of all single muon triggers. Chains refer to a

complete trigger, such as mu15, which is the 15 GeV muon trigger. Features refer to

the objects created by trigger algorithms that store the reconstructed trigger object

properties, such as trigger electron. Nodes can additionally be specified for removal

based upon their location within in the tree (if they are terminal or not), whether the

chain they belong to passed or failed, or by the RoI which seeded them.

Option Name Description

PrintTree Prints navigation structure for debugging
Squeeze Remove all nodes which are not initial, RoI, or terminal

ProtectChains Do not remove final nodes of subchains
RemoveFeatureless Remove nodes which did not build trigger objects

RemoveGhosts Remove nodes which were placed in the ghost state
RemoveFailedChains Remove nodes from chains which were not passed

WriteTree Write the slimmed navigation structure to the output file
ProtectOtherStreams Only remove explicitly listed streams
StreamInclusionList Remove streams not belonging to this list
StreamExclusionList Remove streams on this list
GroupInclusionList Remove groups not belonging to this list
GroupExclusionList Remove groups on this list
ChainInclusionList Remove chains not on this list
ChainExclusionList Remove chains on this list
FeatureInclusionList Remove features not on this list
FeatureExclusionList Remove features on this list
BranchInclusionList Remove RoI’s not on this list
BranchExclusionList Remove RoI’s on this list

Table 4.2: Run-time customizable options for the TrigNavigationSlimming algorithm.
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The most challenging aspect of slimming the navigation is the proper propaga-

tion of information. For example, imagine a chain consisting of an inner detector

tracking algorithm, a muon tracking algorithm, and a combined tracking algorithm.

When slimming the first two, it is necessary to propagate the feature links to the

reconstructed trigger object properties from the first two nodes to the combined node

in order to avoid corrupting the output of the trigger algorithm. Further, many

analysis tools, such as TriggerObjectMatching discussed in section 4.2.2, expect

the terminal node of each chain to not be removed, regardless of its state. The op-

tion ”ProtectChains” was offered to ensure the usabilities of these tools on derived

datasets.

As with all production software, it is of upmost importance that the

TrigNavigationSlimming algorithm run smoothly and correctly over the very large

amount of data processed by the production system. A nightly testing suite was built

to test the package for run time problems and corrupted output. Each night, the

slimming software is automatically run on a nominal dataset with the most up to

date build of the production software and the run time output scanned for errors and

other problems. The slimmed navigation structure is then queried and the answers

compared with answers to queries from the non-slimmed navigation structure.

4.2.2 Trigger Object Matching

Association of offline and online objects is important both for analysis, where an-

alyzers are interested in determining trigger efficiencies and avoiding overlaps, and

performance, where trigger experts are interested in debugging and validating the
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trigger system. In the case of analysis, users typically want to know which physics

object caused the event to be recorded. For example, in tt̄ events, there might be

many high pT leptons, and so it might be necessary to know if the event was triggered

by an electron or a muon, or even which electron or muon. In the case of performance

measurements, it is often necessary to compare the properties of objects as measured

by the trigger and reconstruction system. As the trigger system is constrained by

time, memory, and limited access to detector information, and the reconstruction is

not, a comparison of the two provides valuable feedback as to the performance of the

trigger software.

In practice, associating offline and online objects can be very tricky. First, there

are a number of technical challenges related to retrieving and comparing two pieces

of information stored in very different ways. Second, there are often detector related

effects that are important when associating objects. For example, associating muons

between offline and online might be done based upon their track parameters or upon

the physical hits associated with their tracks in the two systems. Finally, the system

must be implemented in a way that is flexible (in that the definition of association may

be arbitrarily redefined), efficient, and easy to use. The TriggerObjectMatching

code [69] is used both directly by analyzers and during the production of derived

datasets.

Object Retrieval

The first step to offline/online object association to retrieve the objects from the

trigger navigation (described in section 4.2.1). The mechanism for retrieving trigger
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objects from the navigation is provided by a separate tool called the TrigDecisionTool,

and unfortunately is not the same for all types of trigger objects. In particular, there

are three distinct ways for trigger objects to be retrieved from the navigation. In

the simplest case, directly attached classes, it is possible to request the objects di-

rectly from the TrigDecisionTool. In the second case, container attached classes,

it is necessary to request a container of the class requested. For example, if one

wishes to access objects of type TrigMuonEF, it is necessary to request objects of type

TrigMuonEFContainer and flatten the resulting container. Finally, objects from the

level 1 trigger are stored in a different structure that is accessed through the objects

they seed.

To present a unified interface to the user regardless of the type of object,

TriggerObjectMatching utilizes compile time resolution with trait classes. Con-

sider, for example, if requests to the matching framework were passed directly to the

TrigDecisionTool. Directly attached classes would work, but if, for example, the user

requested associated objects of type TrigMuonEF, the request call to the TrigDeci-

sionTool would fail as the correct call is for objects of type TrigMuonEFContainer.

Similarly, calls for level 1 objects would also fail. Instead, a trait class is kept for all

trigger objects. Consider the following code:

struct DirectAttached {};

struct ContainerAttached {};

struct AncestorAttached {};

template<typename T>
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struct ClassTraits {

typedef DirectAttached type;

};

By default, ClassTraits<T>::type evaluates to DirectAttached for all classes

T. It is then possible to specialize the ClassTraits struct for container attached and

level 1 objects. For example:

template<>

struct ClassTraits<TrigMuonEF> {

typedef ContainerAttached type;

};

will result in the resolution of ClassTraits<TrigMuonEF>::type to

ContainerAttached. A similar approach is used for level 1 objects.

Once the trait classes are built, a retrieveObjects function may be written with

the attachment type as an argument, and the correct procedure (directly retrieving,

flattening, etc.) may be implemented for each type using function overloading. Note

that because typedefs and function overloading are evaluated at compile time, it

is possible to present a unified interface to the users of TriggerObjectMatching

for all trigger types, even if the direct retrieval function for the type requested are

not implemented by TrigDecisionTool. This is a powerful feature that completely

insulates the user from the inner workings of the TrigDecisionTool and the trigger

navigation.
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Distance Definition

Once the required trigger objects are retrieved, it is necessary to determine which

trigger objects are associated with which reconstruction objects. To do this associa-

tion, the user is allowed to specify a generic class that evaluates the distance between

objects. This class can be generic to multiple objects, or can be specific to only

the pair of objects under study. Because a class is supplied, the distance definition

can depend on any properties of the two objects, and even on external tools such as

detector conditions, alignment parameters, and other objects in the event.

By default, if no distance class is specified by the user, association is done based

upon ∆R =
√

∆η2 + ∆φ2 of the two objects. However, even this calculation is

not as simple as it would seem. For example, for muon trigger objects, the muon

parameters are measured with respect to different points in the detector for different

trigger algorithms, and thus must be compared to different parameters of the offline

object based upon the trigger algorithm being used. Similar, electron η and φ are

best determined by the track parameters in some algorithms and best by the cluster

parameters in others. To determine the appropriate way to calculate the default η

and φ of a trigger object, compile time resolution and class traits are used as in

object retrieval. This is again a powerful technique which means that objects can be

associated even if nothing analogous to η and φ exists, so long as a relevant distance

class is defined.
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4.2.3 Muon ID Ntuple Makers

In the fall of 2009, the first collisions at the Large Hadron Collider led to a need

for a quick ability to process and analyze collision data for the first time. While a

number of ntuple formats were being developed, only a small handful were usable

on the first data. Muon ID Ntuple Makers [67] was developed starting in mid 2009

and then continuing throughout 2010 as a lightweight and easy to run package for

producing ntuples from ATLAS collision data for early muon based analysis and

official performance measurements of the Muon Combined Performance (MCP) group.

Called MCP ntuples, the data format was focused on very detailed and low level

information about reconstructed muons and the muon trigger system.

The heart of the package is the NtupleMakerBase class, which is responsible for

managing writing output variables to disk. For each physics object, an ntuple dumper

was produced, which converted relevant quantities from ESD datasets into ntuple vari-

ables. The available dumpers are listed in Table 4.3. Basic generic information about

the events including how they were reconstructed, which run and luminosity block

they are from, and the name of the file run over is dumped for each event. Basic infor-

mation is dumped for calorimeter clusters, electrons and photons, jets, missing energy,

and displaced and primary vertices. Detailed information is dumped for muons, inner

detector tracks, muon hits and segments, muon trigger, and, in simulated events, the

truth record. This trade off between space and detail level allows the ntuples to be

used for performance and basic muon analyses without overloading the computing

and storage resources of ATLAS. The current ntuples are roughly 100kB/event for
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2010 collision data, with a size that depends heavily on beam conditions.

Physics Object Information

Event Info Software version, filename, and event numbers
Calorimeter Clusters position, energy, shower shapes

Electron/Photon 4 momentum, particle id, shower shapes
Jets 4 momentum, tagging weights, shower shapes

Missing Energy x and y missing energy, and total energy
Muons track parameters, hit and quality information

Muon RoI parameters, trigger flags, and detector information
Muon Segments and Tags position, direction, quality, and detector information

Muon Hits position, timing, charge, drift radius, and detector
Inner Detector Tracks track parameters, hit and quality information

Trigger Trigger flags, collision timing and quality
Primary Vertex position and associated track information

Displaced Vertex position and associated track information
Truth (MC only) full truth record for all particles

Table 4.3: Physics objects converted from ESD format to ntuple format by the
MuonIDNtupleMakers package.

Ntuples are currently produced for the MCP group as part of central production,

or may be produced by individual users on the grid. Auto configuration is used so

that the ntuple makers correctly identify when they are running on AODs or ESDs,

and when they are running on collision data, cosmic ray data, or Monte Carlo, and

adjust their output accordingly.

4.3 ROOT Reader Framework

This section describes a physics analysis framework based around ROOT [71] that

was designed and implemented at Harvard between 2008 and 2011 [67]. It attempts to

address three main problems encountered by modern particle physics analysis. First,
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too often the physics code is directly tied to the data format being used. While this is

unavoidable to some degree, too much of a break down of the ideas of encapsulation

result in code that is very difficult to maintain and use when there are even minor

changes in data format, much less the major changes that occurred in ATLAS in

2008 - 2011. This framework insulates physics code from the data format, making

analysis code directly transferable between a number supported formats. Second, it

is often difficult for analyzers to share code in a way that ensures reproducibility and

reusability. This framework encourages object oriented modular design which greatly

increases the ability to share code. Finally, there are a number of techniques and tools,

such as slimming, skimming, and batch processing, which are often implemented in

ways that make them difficult to use together. This framework implements these

tools and others in a consistent and easy to use way.

The reader framework is broken into three distinct areas: Objects, which describe

physics objects like electrons, muons, and missing energy; Readers, which are stan-

dalone plugins that build objects assuming a given data format; and Analysis, which

maintains the event loop and executes user code. The following sections describe each

of these parts in detail.

4.3.1 Objects

Objects serve as a layer of abstraction between physics analysis and data format.

For an analyzer, exactly how a muon is stored on disk is immaterial. Rather, the only

thing that is important is what information is available about each muon, and how

that information can be used to select events and perform analysis.
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In the reader framework, all analysis operations are done on objects, and these

objects are independent of the data format. As different data sets can have different

information about each object, this means it is possible for some objects to not be

fully defined. For example, in format A, there may be information about the number

of MDT hits a muon track contains, while that information may be lacking in format

B. In both cases, the muon object is the same, but only in the first is MDT hit

information available. In general, every physics object has an associated object in

the reader framework. Examples include everything from muons to missing transverse

energy to muon raw hits.

This strategy has a number of benefits. First, code that is written in one format may

be run with no changes at all on a different format. In practice, as most data formats

store roughly the same information, simply with different names and in different

ways, there is no difference to the physics analysis. This dramatically decreases turn

around time when updating analyses. Second, this approach promotes object oriented

analysis, which greatly improves code readability and reusability. For example, a

great deal of code in particle physics is written over large lists of vectors loaded from

a ROOT file. The names of these vectors are often difficult to decipher, and there

is no inherent grouping between them. In the reader framework, all of the relevant

information is packaged into a single object which may be passed around with ease,

and parameter values are accessed with simple function calls. Finally, operations on

lists of objects (which are incredibly common in particle physics) are made much

simpler and easier to understand.
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Another benefit of using objects is that their life cycle can be strictly controlled. In

other words, it is possible to control exactly when objects can be created and when

objects can be destroyed. The creation of objects is limited to the readers, which will

be described in the next section, and it is not possible to change the parameters of

objects once they are created. This ensures that objects are created in a consistent

fashion and cannot be corrupted. The destruction of objects is controlled automati-

cally by a custom memory manager that is used in the framework. In particular, all

objects are automatically destroyed at the end of each event, with no input from the

analyzer. This removes the possibility of memory leaks, which otherwise are a very

common source of problems in C++ physics analysis code.

Memory management is achieved automatically through a custom memory manager

class called MemManager. MemManager keeps a linked list of memory allocated from

the heap to use when allocating objects. For all objects in the framework, operator

new is overloaded to request memory from MemManager. At the end of each event, the

framework analysis code sends a clear request to MemManager, which in turn destroys

the objects created in that event and clears their memory from its internal buffer for

future use. This protects against improper or missing deletes, resulting in a corrupted

pointer or a memory leak, and provides a small performance improvement. In the

very rare case that an object is required to live beyond the current event, it is possible

to request memory directly from the heap, which results in an object with a standard

C++ life cycle.
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4.3.2 Readers

Readers are standalone classes that read an input format and produce objects

for use by analysis code. Typically, users interact with them via build object calls

which return a vector of the object in question. For example, buildMuons() returns

std::vector<Muon*>. In general, these build functions handle all of the complexity

of converting the information from on disk to in memory, and the user code need only

specify a few simple parameters like what reconstruction algorithm should be read or

whether, in the case of simulated data, the values should be smeared to better match

those observed in data.

There are three distinct phases in the lifecycle of a reader class. When the frame-

work has been initialized and the data format being read has been determined, all

readers are sent a readBranches() call, in which they declare which on disk vari-

ables should be read and where the resulting information should reside in memory.

This step is very format specific, as it requires in depth knowledge of the available

information and naming schemes. The next step is the build phase, which occurs

when analysis code issues a build object call. At this point, the memory identified

in the readBranches() call has been successfully filled, and those values are used to

construct the object. Note that objects are built only on demand, which dramati-

cally improves performance. Finally, at the end of each event, all readers are sent an

update() message, which can be used to clear caches and prepare for the next event.

An extra layer of abstraction was added between the readers and the I/O libraries

provided by ROOT in the form of two classes: ReaderBase and VectorReader. Re-



Chapter 4: Software 86

quests to read variables in readBranches() are passed through ReaderBase, which

validates the variable names. When requested variables are not found, the ReaderBase

provides default values in memory and logs the misread. Such a mechanism was

found to be absolutely essential in order to allow code to run without crashing de-

spite small, inconsequential changes to unused variables. VectorReader provides a

convenient way for grouping variables that should be run together. When a variable

is requested, it may be assigned to a group. Variables in the same group are read back

as a block, and error checking and corruption detection is performed automatically

in order to ensure the self consistency of these variables.

In general, differing format support is provided by passing along the readBranches()

and build object calls to separate functions for each format. ReaderBase provides

an interface to the file handling objects, described in the next section, to determine

the type of format being read. For example, in the readBranches() function of the

MuonReader, there are readBranch style functions for each format, and the correct

function is chosen based upon the ReaderBase format interface. Currently, four major

formats are supported, which cover the most commonly used formats for most AT-

LAS Standard Model analyses (tt̄ is the major exception), as well as exotics analyses

involving W or Z like particles, and the official formats used for muon performance

measurements. It is also worth noting that the protections offered by ReaderBase

mean that current readers can be run on slimmed and skimmed datasets (discussed

in section 4.3.5) with no changes.
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There are a number of performance considerations that have been taken into ac-

count in the framework. The most performance critical aspect of the framework is

the code in VectorReader, as this is called at least once for every variable of every

object built (in practice, there are more than 10,000 calls per event to the accessor

functions). To maximize performance, the VectorReader is built as a hashed key-

value database, utilizing a fully in memory self balancing, red-black tree. Additional

improvement is gained through the extensive use of caching. All built objects are

cached until the end of the event, which means that subsequent calls to a build ob-

ject style function in a single event are essentially free. This caching dramatically

improves performance.

4.3.3 Analysis

AnalysisBase provides an interface between analysis code, called UserAnalysis

in this section, and the readers, drives the event loop, and does basic file handling.

All UserAnalysis algorithms in this framework inherit from AnalysisBase, which in

turn uses multiple inheritance to inherit from all of the readers, giving UserAnalysis

direct access to the build object functions.

The event loop of AnalysisBase has four distinct phases. During configuration,

UserAnalysis sets the basic properties of the analysis, such as the number of events

to run over, the input files, and the print level. Configuration is typically done in

a standalone run script, and the remaining phases are begun by calling run() on

UserAnalysis.
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Once run() is called, initialization begins, during which three things happen. First,

AnalysisBase opens the first specified input file and checks the input format. Second,

a readBranches() message is sent to all of the readers. Finally, UserAnalysis is sent

an initialize message, which can be used to do whatever pre-event setup need be

done.

In order to determine the input format, AnalysisBase opens the input file and

checks the naming convention of the storage tree in the file. In some cases, this

information alone is enough to identify the format. If it is not, the trees are searched

for the existence of certain key variables. Many formats have distinct tagging variables

(such as the format name and version) specifically for this kind of auto-configuration.

For others, a set of distinctive and unlikely to change variables are chosen.

Once initialization is complete, the events are looped over. For each event, three

things happen. First, AnalysisBase sends a message to the ROOT I/O libraries to

load the information for that event from disk into memory, as specified by the reader

readBranches() calls. Next, a processEvent message is sent to UserAnalysis, in

response to which UserAnalysis does whatever processing it need on the event, such

as filling histograms or recording data. Finally, an update message is sent to each

the readers, causing them to clear their cache and prepare for a new event.

Once all the events have been read (or the event limit is reached), AnalysisBase

enters its final stage. UserAnalysis is sent a finalize message, allowing it to per-

form aggregate computation or write results to a file, and the framework is prepared

for job completion.
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4.3.4 Batch Support

Particle physics analysis is a perfect candidate for parallel processing as each event

may be processed in any order, and is fundamentally separate from every other event.

In particular, massive gains in throughput may be gained by breaking a large job into

many small pieces, running each piece on a different CPU, and then combining the

output. The reader framework provides native support for batch processing based on

the MapReduce algorithm [42]. Note that this support is only provided for clusters

running Load Sharing Facility (LSF) as their batch controller.

When a job is submitted, AnalysisBase determines the job properties by commu-

nicating with the LSF daemon. If the job is being run interactively, then no changes

are made. If the job is being run in batch mode, the input file list is adjusted ac-

cording to the the job index and total number of jobs so that the input files are split

evenly among all jobs. The job splitting procedure is done without input from the

user, so that code may be run completely unmodified in interactive or in batch modes.

Additionally, for debugging purposes, it is possible to mimic a job configuration when

running interactively, which greatly improves the ability to correct problems in batch

processing.

Writing to output files is more complicated in parallel processing than when running

interactively because multiple access at the same time to the same output file will

corrupt the results. To handle this, the reader framework includes the FileHandler

class, which allows analysis code to write objects (such as histograms or canvases) to

files in a batch safe way. Jobs which are writing a file write a locking file, typically
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a short text file specifying which files they are currently using. When FileHandler

attempts to write to a file, it first checks for the existence of a lock file. An atomic

non-overwriting write is used to attempt to create a lock file, and if no lock file exists,

it creates a lock file, and updates the output file to contain the object being written.

When it finishes writing, it removes the lock file. In the case that a lock file already

exists, there are two possible actions based upon the write mode. If the write mode

is forced, FileHandler will halt execution and wait until the lock is removed. If the

write mode is unforced, FileHandler will continue with execution, and check back

periodically to see if the lock is free. The result is a single, merged output file with

the combined output of all jobs.

4.3.5 Skimming and Slimming

Particle physics analysis makes use of many data reduction techniques in order to

reduce the time it takes to perform analysis. The reader framework provides two basic

types of data reduction: skimming, in which specific events of interest are filtered out

into a new dataset, and slimming, in which only certain variables in the dataset are

written to the output. Both of these are highly integrated into the analysis framework,

and may use any of the other features mentioned, including, most importantly, batch

support, without any changes.

AnalysisBase provides an easy to use interface for skimming datasets. In the

initialize() function of analysis code, a skimming job registers a skim with

AnalysisBase, providing a name, an output file, and optional parameters about how

often to flush the results to disk. In the processEvent() function, the skimming
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job simply calls acceptEvent() and provides the name of the skim passed in order

to include the event in the output. The framework then handles the writing of the

output files and the batch interface. Note that it is possible to create many skims in

a single job.

To produce slimmed datasets, the user must provide a class which describes which

variables should be included. It is possible to include existing variables as well as

produce new variables. The latter feature is very useful when producing summary

quantities that are calculated from many otherwise unneeded inputs. As with skim-

ming, the user need only setup the slimming during initialize() and fill it during

processEvent(), and includes simple batch support. In the 2010 analyses, aggressive

slimming and skimming produced datasets that were ten to one hundred thousand

times faster to run over than the originals.

4.3.6 Cut Flows

Most physics analyses consist of a sequential list of cuts that are applied to objects

in the event. It is common to produce plots of the properties of events passing each

cut in the list and a table of the total number of events at each stage. The reader

framework provides an optional component called CutFlow in order to make these

tasks easier and less error prone.

The basic unit of the CutFlow framework is the Cut. A Cut describes a single step

in the analysis. For example, there might be a step which requires at least one muon

passing certain quality requirements, or a step requiring a trigger be passed. The
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reader framework provides a library of highly configurable Cut classes that represent

the most commonly used analysis steps, including object quality requirements, trigger

requirements, detector status requirements, and object combinations (such as the

formation of a Z boson from two leptons).

A CutFlow object is then a list of Cut objects along with their configuration for a

specific analysis. Each analysis has its own CutFlow object, and some complicated

analyses with many chains have more than one. The CutFlow framework provides a

number of useful convenience functions. First, analysis code may find out whether an

individual event passed any or all of the cuts. Second, analysis code may retrieve the

objects which caused an event to pass or fail an individual cut. Finally, a number of

useful summary statistics and plots are produced automatically and written out at

the end of the job.

This strategy offers a number of very useful benefits. Code development is much

faster, as many common tasks are done automatically and there is a high degree of

reusability. Many analysis can be done simply by configuring a set of existing cuts

from the library. However, even more important is that this design promotes code

that tends to have fewer bugs. Multiple different analyses use each cut object, which

means each cut object is highly validated. Additionally, the design leads to code that

is simpler to read and separates tasks more clearly, which makes it easier to catch

problems. Lastly, code is developed around the analysis goals, rather than around

the underlying data format or framework, which results in code that better reflects

physics rather than C++.
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WpT

This chapter describes the measurement of the W transverse momentum spectrum

in the decay channels W → µν and W → eν and is adapted from the internal ATLAS

note describing the analysis [13]. In general, this chapter focuses more on the muon

channel than the electron channel, and provides more detail than the internal note

where appropriate.

There are three distinct regimes in which this spectrum is measured. After event

selection and background subtraction, there is an estimate of WpT spectrum at the

reconstruction level which includes the effects of both detector resolution and event

selection efficiency. Using a technique known as unfolding, the reconstruction level

spectrum is corrected for detector resolution resulting in a WpT spectrum at the truth

selected level. This regime has been corrected for detector resolution, but still contains

event selection effects. Finally, the truth selected spectrum is corrected to the truth

fiducial level which is the WpT spectrum for W decays within the fiducial volume of

93
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the detector. Note that there is no correction back to the total WpT spectrum as

such an extrapolation is based entirely off of Monte Carlo, and thus includes a large

degree of theoretical uncertainty.

Events are selected by looking for a high pT isolated lepton along with large miss-

ing transverse energy. There are two general types of backgrounds that mimic this

signal. The first, called QCD backgrounds, comes from the production of two or more

(typically heavy flavor) jets in which a lepton is produced from particle decay or a jet

is misidentified as a lepton and mismeasurement of the jet energy results in missing

transverse energy. While the vast majority of such events are rejected by the event

selection requirements, the very high jet production cross section at the LHC results

in a non-negligible jet background. As this is poorly modeled in simulation, the size

and shape of the QCD background is extracted from data. The second is from true

sources of high pT isolated leptons and includes W decays to τ ’s, Z → `` decays

where a lepton is lost, tt̄ semileptonic and dileptonic decays, and leptonic single top

decays. This type of background is typically better modeled in simulation, and so is

extracted from Monte Carlo that has been corrected to better match observed data.

Due to the presence of the undetected neutrino in the decay of the W , the WpT

must be inferred from momentum balance in the event. The simplest way to do this

is to take the missing transverse energy as the pT of the neutrino and sum this with

the pT of the reconstructed lepton. However, this is an undesirable solution because it

explicitly depends on the flavor of the lepton (as different corrections are applied for

electron and muon to the /ET ) and thus makes the combination of the channels more
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difficult. Instead, this analysis takes advantage of the fact that the W must balance

in the transverse plane with the hadronic activity in the event. In particular, the

sum of all of the calorimeter energy depositions (corrected for the lepton depositions)

in the event gives a picture of the W transverse momentum, known as the hadronic

recoil, that is independent of lepton flavor.

Correcting from the reconstruction level to the truth selected level involves correctly

accounting for the smearing of the spectrum due to detector resolution. This analysis

unfolds the measured WpT spectrum by solving the equation

x = Ay (5.1)

where x is the measured spectrum, y is the true distribution, and A is the response

matrix, which describes how true WpT is mapped to reconstructed WpT . Correctly

modeling the detector response with an accurate A is a central goal of the measure-

ment and is done with Z → `` data events. Correction factors are extracted from

the resolution difference in Z decays in data and Monte Carlo, and these factors are

used to correct W Monte Carlo and produce a data driven response matrix. The re-

sulting response matrix is used to extract the truth selected WpT spectrum using an

iterative unfolding algorithm called Bayesian unfolding, and the unfolded spectrum is

then corrected to the truth fiducial level using correction factors derived from Monte

Carlo.
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5.1 Data and Simulation Samples

This analysis is based on approximately 30 pb−1 of data collected from September

25th to October 29th, 2010 and corresponds to approximately 105k W candidates

in the electron channel and 125k in the muon channel. This is only approximately

90% of the total data recorded by ATLAS in 2010 with good detector and beam

conditions. The unused portion of the data came from before September 25th and was

dropped in order to maintain stable trigger and reconstruction conditions throughout

the analysis.

In addition, this analysis used a number of simulated samples in order to per-

form background subtraction, efficiency corrections, and build a map of the detector

response. Wherever possible, the simulated samples were corrected to better match

observed data with event reweighting based upon the number of reconstructed vertices

and lepton momentum smearing and scaling. This section describes the requirements

placed upon the collected data, the simulated samples that were used, and the Monte

Carlo corrections that were applied.

5.1.1 Data Quality and Luminosity

All data used in this analysis is required to pass requirements on beam and detector

conditions as specified by a Good Runs List (GRL) [18]. Both the electron and muon

channels require stable beams with
√
s = 7 TeV and good working conditions for the

trigger, calorimeter, muon spectrometer, inner detector, and luminosity monitors.

There is a small difference in the requirements for the muon and electron channels, in
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that the muon channel requires additional offline quality checks to be passed for the

muon chambers, and each channel requires that their respective trigger is working.

The integrated luminosity is measured using van der Meer scans to be 32.6 pb−1 for

the electron channel and 30.2 pb−1 for the muon channel with an uncertainty of 3.4%

[11]. The exclusion of the early data results in a loss of roughly 3.8 pb−1 per channel.

The data was processed using AtlasProduction release 15.6.13.2 and analyzed from

D3PDs produced by Standard Model W/Z group production.

5.1.2 Trigger Requirements

Electron channel events are required to pass the EF e15 medium trigger, which is an

Event Filter 15 GeV calorimeter based electron trigger. This trigger is not available

in the Monte Carlo, and so the L1 EM14 trigger (a 14 GeV calorimeter based Level 1

trigger) is used instead and the trigger efficiency is scaled according to the measured

data efficiency over the Monte Carlo efficiency (see section 5.8.2).

The lowest unprescaled single muon trigger was rapidly changing as the instanta-

neous luminosity of the LHC ramped up over 2010. While dropping the early data

helped reduce this complexity tremendously, there were still two distinct muon trig-

gers used for this analysis, shown in Table 5.1. For the first half of the data, the

EF mu13 MG trigger was used. This is an Event Filter trigger based upon the MuGirl

algorithm using extrapolated ID tracks matched to hits in the muon spectrometer. It

is seeded by L1 MU0, which requires a coincidence in the muon trigger chambers, but

does not place an explicit pT threshold, and requires an Event Filter pT of at least 13
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Period Trigger Int. Lumi [pb−1]

G2 - I1(up to run 167576) EF mu13 MG 15.2
I1 (from run 167607) - I2 EF mu13 MG tight 15.0

Table 5.1: Triggers used in the muon channel analysis as a function of period and run
number.

GeV. For the remainder of the data, EF mu13 MG was prescaled, and so the slightly

tighter EF mu13 MG tight was used. This is very similar to EF mu13 MG, except that is

it seeded by the level 1 trigger L1 MU10 instead, which requires a 10 GeV pT threshold

at level 1. These algorithms are very loose in their matching criteria, and indepen-

dent of the offline reconstruction algorithm. Neither of these triggers were available

in Monte Carlo, and so the EF mu10 MG trigger was used, and scaled with the ratio of

the measured trigger efficiencies in data and Monte Carlo (see section 5.8.2).

5.1.3 Simulation Samples

The simulated samples used in this analysis are shown in Tables 5.2 and 5.3 for

the muon and electron samples respectively. In most cases, simulated samples include

multiple interactions per collisions, called pileup, in order to more correctly model the

energy distributions in data events. The number of reconstructed vertices is used to

weight the Monte Carlo to the number of interactions observed in data, as described

in section 5.1.4.

Signal Monte Carlo was used in the production of the data driven response matrix,

to calculate the efficiency corrections, and to estimate systematic uncertainties. Z →

µµ Monte Carlo was used in the production of the data driven response matrix,
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and, along with W → τν, Z → ττ , tt̄, and single top Monte Carlo, to estimate

the electroweak background. Finally, heavy flavor and multijet Monte Carlo (called

QCD) was used as part of extrapolation of isolation efficiencies of QCD events from

the control to signal regions in the QCD background estimate.

The W pT spectrum at the truth fiducial level is compared with predictions from

Pythia [74] which has been tuned to the W and Z pT spectrums observed at the

Tevatron. For estimations of systematics, a sample produced with Alpgen [55] and

a sample produced by Pythia but reweighted to match the W pT spectrum produced

by Resbos [2] are used.

Process Generator Cross-section (nb) Nevt(x106)

W → µν Pythia 10.46 7.7
W → µν Alpgen+ Herwig 10.46 1.8
Z → µµ Pythia 0.989 0.3
W → τν Pythia 10.46 0.1
Z → ττ Pythia 0.989 0.1

tt̄ (without pileup) MC@NLO 0.165 0.2
single top (without pileup) MC@NLO 0.00712 0.02

J0 ( 8 < pjetT < 17 GeV ) Pythia 9.86 ×106 0.4

J1 ( 17 < pjetT < 35 GeV ) Pythia 6.78 ×105 0.4

J2 ( 35 < pjetT < 70 GeV ) Pythia 4.10 ×104 0.4

J3 ( 70 < pjetT < 140 GeV ) Pythia 2.20 ×103 0.4

J4 ( 140 < pjetT < 280 GeV ) Pythia 87.7 0.4

J5 ( 280 < pjetT < 560 GeV ) Pythia 2.35 0.4

Table 5.2: Simulated data samples used in the muon channel analysis. All samples
include pileup unless noted.
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Process Generator Cross-section (nb) Nevt(x106)

W → eν Pythia 10.46 7.0
Z → ee Pythia 0.989 1.0

W → τν (without pileup) Pythia 10.46 0.15
Z → ττ Pythia 0.989 0.10

tt̄ (without pileup) MC@NLO 0.165 1.0
“JF17” Pythia 1.15 ×106 10.

Table 5.3: Simulated data samples used in the electron channel analysis. All samples
include pileup except where noted.

5.1.4 Monte Carlo Corrections

The Monte Carlo modeling of detector conditions is corrected to match the observed

data in three basic ways. First, the Monte Carlo is corrected to the number of

reconstructed primary vertices observed in data. This serves to better model the

actual pileup in the LHC and therefore improve the agreement between Monte Carlo

and data in modeling the energy in the calorimeter. To perform this correction,

both channels measured the number of reconstructed primary vertices with at least

3 tracks in events passing the GRL requirements, trigger requirement, and which

had at least one high pT lepton. The lepton requirement was ET > 18 GeV and

passing Robust Medium [20] requirements in the electron analysis, and a combined

muon with at least 20 GeV in the muon analysis. In order to suppress cosmic rays,

the muon analysis additionally required that all primary vertices be within 20 cm

of the nominal interaction point to be counted. As an identical procedure was used

to generate pileup in all simulated samples, a single set of weights as a function of

reconstructed vertices was calculated for each channel, and is shown in Table 5.4.
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Vertices 0 1 2 3 4 5 6 7 8 9 10

Muon Weight 1 1.48 1.10 0.89 0.77 0.72 0.70 0.70 0.79 0.92 0.87
Electron Weight 1 1.48 1.11 0.89 0.77 0.71 0.69 0.67 0.77 0.83 1.10

Table 5.4: Weights used to correct the pileup model used in event simulation. Note
that 0 primary vertex events do not pass event selection and thus those weights are
not used.

In general the reconstruction and trigger efficiencies are not perfectly modeled in

the Monte Carlo. Differences in efficiency between data and simulation as a function

of WpT can affect the shape of the efficiency corrected spectrum, and thus must be

accounted for. Data efficiencies were measured using Z decays and used to correct

the Monte Carlo as described in more detail in section 5.8.

Finally, correct modeling of the lepton resolution plays an important role in building

the data driven response matrix which is used to unfold the reconstructed WpT

spectrum. Studies were performed to measure the lepton resolution and scale using

the Z mass constraint and the results were used to correct the simulation. This is

described in more detail in section 5.8.

5.2 Event Selection

Selected events are required to have one high quality, high pT lepton with transverse

energy or momentum greater than 20 GeV, missing transverse energy greater than

25 GeV, and a transverse W mass of at least 40 GeV. This section describes the

details of this selection for each channel, with a focus on the muon selection. The

requirements are generally the same as used in other ATLAS W and Z analyses and

are based off of detailed studies done for first W measurements [14, 19, 12].



Chapter 5: WpT 102

Collision-like Event
Trigger EF mu13 MG or EF mu13 MG tight

Jet Cleaning Cleaning Cuts (see [47] )
Primary Vertex At least one PV with Ntrk ≥ 3 and |z0| < 200 mm

High pT muon
Muon Preselection Combined Staco Muon

pT > 15 GeV, |η| < 2.4
Muon Quality pMS

T > 10 GeV∣∣(pMS
T − pIDT )/pIDT

∣∣ < 0.5
Npix ≥ 1, NSCT ≥ 6
NTRT = Nhits

TRT +N outliers
TRT

if |η| < 1.9, then require Nhits
TRT > 5 and N outliers

TRT /NTRT < 0.9
if |η| ≥ 1.9 and Nhits

TRT > 5 , then require N outliers
TRT /NTRT < 0.9

Muon PV matching |zµ0 − zvtx0 | < 10 mm

W → µν
Tight Kinematics pµT > 20 GeV

Muon isolation (ΣpT (cone 0.4)) / pµT < 0.2
Missing ET Emiss

T > 25 GeV
Transverse Mass MT > 40 GeV

Table 5.5: Selection of W candidates for muon channel analysis

5.2.1 Muon Event Selection

Selection of muon candidates is divided into three stages: collision like event re-

quirements, high pT muon selection, and W selection. These cuts are summarized in

Table 5.5.

Events are first required to pass the lowest unprescaled single muon trigger as

described in section 5.1.2. In order to prevent the inclusion of events containing large

noise spikes in the calorimeter, jet cleaning cuts are applied on the quality, timing, and

energy distribution of jets in the event, as described in more detail in [47]. Finally, a

primary vertex with at least 3 associated tracks within 20 cm of the nominal origin of
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the detector in z is required. This serves to reject cosmic rays, which would otherwise

mimic W → µν decays if one leg of the muon was lost, while maintaining higher than

99.9 % efficiency on signal events [14].

The selection of high quality, high pT muons used in this analysis is based on

detailed studies done by the Muon Combined Performance group and matches the

selection used by other late 2010 W and Z analyses [15, 19, 14, 12]. For completeness,

the rational behind this selection will be discussed in detail here.

Only combined muons - those with matching inner detector and muon spectrometer

tracks - are used as they provide the best momentum resolution with the lowest fake

rate. In particular, they are very effective at rejecting muons from pion and kaon

decays in flight. Muons are restricted to |η| < 2.4 in order to be within the fiducial

volume of the muon trigger. A preselected sample of events with muons with pT > 15

GeV is used to perform data/simulation comparisons and as a high statistics control

region for the QCD background estimation.

High quality muons are selected through a series of cuts on the quality of the in-

dividual inner detector and muon spectrometer tracks. First, the muon spectrometer

track is required to have a pT of at least half the pT of the inner detector track, with

a minimum cutoff of 10 GeV. This largely serves to reject muons from decays of the

form π± → µ±ν or K± → µ±ν, as the momentum of the muon and the meson will

be very different due to the emission of a neutrino.
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The inner detector track is also required to have the expected number of hits in

the pixel, semiconductor, and transition radiation trackers. The number of outliers

is another important variable, and represents the number of TRT hits which do not

match well to the track during pattern matching. For non-prompt muons (such as

those from heavy flavor and pion decays), there is often a kink or a missing segment

near the interaction point, and these cuts serve to reject these muons.

The muon is also required to have a point of closest approach to the beamline

within 10 mm of a selected primary vertex in the z axis. This cut serves to reject

cosmic ray muons that are produced in time with a high energy collision. Without

this cut, high pT cosmic rays in which the top or bottom half of the tracks are lost

would be reconstructed as W candidates.

Finally, W candidates are selected by placing requirements on the muon isolation,

the /ET of the event, and the transverse mass of the W . Muons from W and Z decays

are typically produced far away from any hadronic depositions in the calorimeter,

whereas muons from heavy flavor decays (like b jets) tend to be produced close to

hadronic activity. To remove these background muons, the pT ’s of all the tracks

within ∆R < 0.4 of the muon are summed, and the result is required to be less than

20 % of the muon pT . The /ET in the event is calculated by taking negative of the sum

over the calibrated calorimeter clusters and the momentum of reconstructed muons

(accounting for energy depositions in calorimeter by the muon). To select events with

a high pT neutrino, the magnitude of /ET is required to be at least 25 GeV. Finally,

the transverse mass is calculated as:



Chapter 5: WpT 105

m2
T = 2pT /ET (1− cos (φµ − φν)) (5.2)

where pT is the transverse momentum of the selected muon, φµ is the muon azimuthal

angle, and φν is the azimuthal angle of the missing transverse energy. The transverse

mass is used as the existence of the neutrino makes the calculation of the full mass

of the W impossible.

General kinematic quantities for the selected data as well as the signal and back-

ground Monte Carlo samples are shown in Figure 5.1. The Monte Carlo samples

are weighted according to the measured luminosity and the theoretical cross-section.

Note that for the full background subtraction, described in section 5.5, data driven es-

timates are used for the multijet background (called QCD here). Using this selection,

124,797 W candidates are selected in the dataset used for the analysis.

5.2.2 Electron Event Selection

Selection of electron candidates is divided into three sections: collision like event

requirements, high ET electron selection, and W selection. These requirements are

summarized in Table 5.6.

Collision like event requirements begin with the trigger requirement described in

section 5.1.2. Events with large spikes in calorimeter energy likely due to noise are

removed in order to prevent bias to high /ET with Jet Cleaning and OTX Cleaning

cuts described in [47] and [46] respectively. Finally, the event is required to have a

reconstructed primary vertex with at least three tracks. Unlike the muon selection,



Chapter 5: WpT 106

ηMuon 
-3 -2 -1 0 1 2 3

E
ve

nt
s

1

10

210

310

410

510

610

710

810
Data

ν µ →W 
µ µ →Z 
ν τ →W 

QCD
tt 

τ τ →Z 

(a) Muon η

 [GeV]
T

Muon p
20 30 40 50 60 70 80 90 100 110 120

E
ve

nt
s

1

10

210

310

410

510

610
Data

ν µ →W 
µ µ →Z 
ν τ →W 

QCD
tt 

τ τ →Z 

(b) Muon pT

 [GeV]
T

Missing E
30 40 50 60 70 80 90 100 110 120

E
ve

nt
s

1

10

210

310

410

510

610
Data

ν µ →W 
µ µ →Z 
ν τ →W 

QCD
tt 

τ τ →Z 

(c) Missing ET

Transverse Mass [GeV]
40 50 60 70 80 90 100 110 120 130 140

E
ve

nt
s

1

10

210

310

410

510

610
Data

ν µ →W 
µ µ →Z 
ν τ →W 

QCD
tt 

τ τ →Z 

(d) Transverse Mass

Figure 5.1: Kinematics from selected events in data and Monte Carlo signal and
background samples. Monte Carlo samples are weighted according to the measured
luminosity times the theoretical cross section.



Chapter 5: WpT 107

Collision-like Event
Trigger EF e15 medium

Jet Cleaning Cleaning Cuts (see [47] )
OTX Cleaning Object Quality Checks (see [46])
Primary Vertex At least one PV with Ntrk ≥ 3

High ET electron
Electron Kinematics ET > 20 GeV

|ηe| < 1.37 or 1.52 < |ηe| < 2.47
Electron Quality Robust Tight [20]

W
Missing ET /ET > 25 GeV

Transverse Mass MT > 40 GeV

Table 5.6: Selection of W candidates for electron channel analysis

no explicit cut is made on the z position of the primary vertex relative to the nominal

collision point.

The electron object selection has been studied in great detail during the first W

analyses and more information can be found in [20] and [9]. This analysis uses a

selection consistent with other late 2010 W analyses, such as the charge asymmetry

analysis [14]. Electrons are required to pass the Robust Tight [20] cuts, which require

a high quality shower consistent with an electron and a good track match in direction

and E/p. They are also required to have ET > 20 GeV and |η| within the fiducial

acceptance of the electromagnetic calorimeter.

Events are then checked to be kinematically consistent with the decay of a W boson

into an electron and neutrino. A /ET > 25 GeV cut is applied as a proxy for selection

of the neutrino and to reduce the effect of QCD background. Finally, a transverse

mass cut on the /ET and selected electron combination is applied. There are a total
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of 104,904 W → eν candidates selected from the data sample used in this analysis.

5.2.3 Fiducial Selection

The WpT spectrum is corrected back to the fiducial volume rather than the total

truth level as this limits theoretical uncertainties when doing the efficiency correction.

The fiducial requirements are defined at the truth level as p`T > 20 GeV, |η`| <

2.4, pνT > 25 GeV, and mW
T , calculated with the neutrino instead of the missing

energy, greater than 40 GeV. These requirements are similar to the event selection

requirements described previously.

5.3 Hadronic Recoil

Due to the existence of the neutrino, which is not measured by the detector, it

is not possible to reconstruct the WpT directly. Instead, the transverse momentum

of the neutrino can be inferred by the energy imbalance in the transverse plane,

and then summed with the selected lepton pT to generate the WpT . However, this

approach misses an important point: the transverse momentum of the W can be

directly calculated by summing the energy and momenta of all particles in the event

other than the W decay products. In particular, the WpT can be measured without

reference to the lepton pT by summing the energy depositions in the calorimeter.

This technique, known as hadronic recoil [31], is very powerful because it is lepton

flavor independent, and thus allows the detector response in the muon and electron

channels to be combined directly.
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The hadronic recoil algorithm forms the vector sum of all calorimeter cluster mo-

menta except for those in a cone around the selected lepton. As it is likely for the

lepton, especially in the case of electrons, to deposit energy in the calorimeter, clusters

within a small cone of the lepton are removed. In general there will be depositions

unrelated to the lepton near the lepton and these will be removed. To account for

this bias, clusters are selected from a cone taken from a similar detector region, but

far from the lepton, in the same event, and rotated into the lepton cone. This section

describes this algorithm in more detail.

5.3.1 Algorithm

The uncorrected hadronic recoil is defined as:

~Runcorr =
∑

∆R>∆Rmin

~pT,clus, (5.3)

where ∆R is the distance between the cluster and the closest selected lepton, ∆Rmin

is a parameter of the algorithm, and the sum is taken over the momentum of the

calorimeter clusters in the transverse plane.

For each selected lepton, a sampling cone axis is picked by randomly rotating the

lepton axis in φ outside an allowed spacing from the lepton and the recoil. That is,

ηcone = ηlepton and φcone is chosen randomly such that ∆φ(cone, lepton) > ∆φlepton

and ∆φ(cone, recoil) > ∆φrecoil, where ∆φlepton and ∆φrecoil are parameters of the

algorithm. The correction factor is then defined as:



Chapter 5: WpT 110

~Rcone =
∑

∆Rcone<∆Rmin

~pT,clus. (5.4)

That is, the sum of the clusters within the cone around the new, randomly selected

axis. The correction factor, ~Rcone, is then rotated in φ by ∆φ(lepton, cone), the angle

in φ between the lepton and cone axis, and the corrected recoil is taken as the sum

of the uncorrected and cone recoils:

~Rcorr = ~Runcorr + ~Rcone (5.5)

A diagram of this algorithm in the electron channel is shown in Figure 5.2.

Figure 5.2: Diagram of the hadronic recoil calculation for W → eν decays.

5.3.2 Performance

The performance of this algorithm is characterized by the bias and resolution par-

allel to the true recoil and perpendicular to the true recoil. These projections are
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Figure 5.3: Response matrix showing reconstructed versus true WpT in W → eν
Monte Carlo for standard (left) and hadronic recoil (right) algorithms.

defined by the equations:

preco‖ (W ) = R‖ = ~precoT · ~u , preco⊥ (W ) = R⊥ = ~precoT · ~v (5.6)

where ~u and ~v are unit vectors parallel and perpendicular to the truth WpT

respectively. At the truth level, one has ptrue‖ = ptrueT and ptrue⊥ = 0. These quantities

are of interest because the behavior of the parallel and perpendicular components

can be quite different. In particular, the perpendicular component probes only the

resolution, while the parallel component can probe the bias as well.

Performance was measured relative to the standard calculation which uses missing

energy to infer the pT of the neutrino, and in each case the hadronic recoil algo-

rithm performed as well or better than the standard algorithm. Figure 5.3 shows

the relationship between reconstructed and true WpT for both the hadronic recoil

and standard algorithms. In particular, there are fewer off diagonal elements using

hadronic recoil, which makes unfolding from the reconstruction level to the truth

selected level much easier.
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of the angle between the lepton and the W for the standard, uncorrected hadronic
recoil, and corrected hadronic recoil algorithms in W → µν Monte Carlo. The ampli-
tude of the oscillation, A, is determined by fitting the bias with a sinusoidal function.

The effect of bias due to leptonic energy deposition was measured by examining the

bias perpendicular to the true WpT as a function of the angle between the W and the

lepton. In particular, when the lepton and the W are aligned, this bias should be 0,

while it should be maximal when they are perpendicular. The resulting bias is shown

in Figure 5.4 for the muon channel. In the standard algorithm, the magnitude of the

bias is roughly 1.5 GeV, while with the uncorrected hadronic recoil algorithm, the

bias is reduced to roughly three hundred MeV. Applying the fully correctly hadronic

recoil algorithm removes this bias completely. There is a corresponding improvement

in resolution as a function total ET in the event, which is shown in Figure 5.5.
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Figure 5.5: Resolution of the standard and corrected hadronic recoil algorithms as a
function of total transverse energy in the event in W → µν Monte Carlo.

5.3.3 Limitations

The main limitation of this technique is that it implicitly assumes that the selected

leptons are well isolated. If they are not, then the correction technique performs very

poorly, as it replaces a region around the lepton, which contains a lot of calorimeter

activity, with a region from the detector specifically picked to have no hard calorimeter

activity. This often results an imbalance in the hadronic recoil, which increases the

magnitude of the reconstructed WpT .

This is not a problem for signal leptons which are highly isolated. However, for

data driven background estimates, particularly those for QCD backgrounds, it is

common to look at background rich low /ET control regions. In cases such as this,
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the approach used is to select events using /ET , but calculate the background effective

WpT spectrum using the hadronic recoil.

5.4 Binning of Results

Binning plays an important role in this analysis due to the bin-to-bin correlations

that are introduced when unfolding and when normalizing. Smearing due to detector

resolution pushes events from a given true WpT bin into the surrounding reconstruc-

tion level WpT bins, and so the unfolding process tends to correlate neighboring bins.

The final result is normalized in order to provide a shape that is independent of lu-

minosity. In this case, as the WpT spectrum is rapidly falling, the normalization is

heavily dependent on the contents of the first few bins. In particular, fluctuations in

the first bin results in fluctuations in the later bins due to the change in number of

observed events. This results in global correlations between the first few bins and all

of the remaining bins. The relative size of bins plays an important role in determining

the degree of this correlation.

At low pT , the binning decision is driven by the resolution of the detector. In

particular, there is an inherent resolution of approximately 6 GeV. As the measured

WpT is actually the sum in quadrature of two pieces (recoil in x and recoil in y), both

of which are subject to this resolution, there is a Jacobian peak in the reconstructed

WpT spectrum that is due solely to detector effects and contains no physics informa-

tion. Even further, it can be shown that below approximately 8 GeV, very differing

shapes in true WpT result in very similar shapes in reconstructed WpT due to this
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resolution effect. Thus, unfolding with true bins with width less than 8 GeV results

in very large correlation and systematic errors, and is avoided in this analysis.

The final binning was a compromise between minimizing correlations and uncer-

tainties and maximizing physics content. As will be discussed later, the unfolding

algorithms are able to improve their accuracy through the use of finer binning at the

reconstruction level than the truth level, and so that strategy was used. The recon-

struction and truth level binnings are shown in Table 5.7, and the resulting purities

are shown in Figure 5.6. Note that while the binning extends to 500 GeV, results

are only shown up to 300 GeV. This is done in order to avoid edge effects due to

migration outside of the response matrix range during the unfolding process.

Level Binning [ GeV ]

Reconstruction 0, 4, 8, 15, 23, 30, 38, 46, 55, 65, 75, 85, 95, 107, 120,
132, 145, 160, 175, 192, 210, 250, 300, 400, 500

Truth 0, 8, 23, 38, 55, 75, 95, 120, 145, 175, 210, 300, 400, 500

Table 5.7: Binning used at the reconstruction and truth levels.

5.5 Background Estimation

The background contamination in the W sample is estimated using data driven

techniques for QCD backgrounds and from Monte Carlo simulation for W , Z, and top

backgrounds. In both cases, backgrounds are estimated in bins of WpT as calculated

using the hadronic recoil algorithm. W , Z, and top backgrounds are estimated by

applying the W event selection to corresponding Monte Carlo samples, and then

scaling the number of events by the theoretical cross section times the luminosity.
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Figure 5.6: Bin purity from W → `ν Monte Carlo

QCD backgrounds are estimated in both channels in roughly the same way. The

low /ET region is used to form a control sample, which is then extrapolated to the

signal region using Monte Carlo that has been corrected to the data. Cosmic ray

contamination in the muon channel has been estimated to be less than one event,

and is therefore ignored [14]. The observed muon data is shown with the major

backgrounds identified in Figure 5.7.

5.5.1 Backgrounds from W , Z, and top

W , Z, and top have very similar properties in both the electron and muon channels

and make up roughly 6% of the total selected sample. In particular, the largest

backgrounds, which are considered here, are from W → τν, in which the τ decays to

a lepton of interest, Z → ``, where a lepton is lost, Z → ττ , and tt̄. Additionally,

there is a very small background from single top production (decaying to a τ or the

lepton under study).
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Figure 5.8: Estimated W , Z, and top backgrounds in the muon channel, separated
by sample.

The shapes of these backgrounds are estimated by applying the event selection de-

scribed in section 5.2 to Monte Carlo samples which have been corrected as described

in section 5.1.4. The total number of background events is determined by scaling each

sample according to its theoretical cross section multiplied by the measured luminos-

ity. The separate contributions from each sample in the muon channel are shown in

Figure 5.8. The resulting number of total W , Z, and top background events per bin

is shown in Figure 5.9 for the muon channel.

Systematic uncertainties on the electroweak background estimate include uncer-

tainties on the scale factors used to correct the trigger and reconstruction efficiencies,

a very conservative 3% uncertainty due to variation of selection efficiency on the
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PDF set used (see [18]), an uncertainty introduced by muon resolution smearing and

scaling corrections, and finally an uncertainty on the theoretical prediction of the

sample of cross section. The trigger and reconstruction efficiency scale factor uncer-

tainties are computed as described in sections 5.8.2 and 5.8.3. The smearing and

scaling uncertainty is taken, very conservatively, to be 100% of the difference between

the background estimate with and without the correction applied. The cross section

uncertainties for the W and Z backgrounds are taken to be 5% and completely cor-

related. The single top cross section uncertainty is taken as 10% and correlated with

the tt̄ cross section uncertainty, which is taken to be 6%. Finally, the overall estimate

is assigned a 3.4% uncertainty due scaling by the measured luminosity. The resulting

uncertainties, broken down by source, are shown in Figure 5.9 for the muon channel.

5.5.2 QCD in the Muon Channel

The QCD background in the muon channel is estimated using a data driven tech-

nique called the matrix method [14, 19] which uses the QCD rich non-isolated muon

sample as a control region. The standard muon event selection is performed, with the

isolation requirement reversed, and then the resulting events are scaled by isolation

efficiencies as a function of hadronic recoil measured in data.

For each bin, i, in hadronic recoil, let N i
isol and N i

loose be the number of events

passing the isolated selection and the number of events passing selection with no

isolation respectively. Further, let εiQCD and εinon−QCD be the efficiency of events in

the i-th bin to pass the isolation cut for QCD and non-QCD (W , Z, top) events

respectively. The two counts Nisol and Nloose may be written as:
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.
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N i
loose = N i

non−QCD +N i
QCD

N i
isol = εinon−QCDN

i
non−QCD + εiQCDN

i
QCD (5.7)

where N i
QCD and N i

non−QCD are the number of events in the i-th bin of hadronic

recoil from QCD and non-QCD sources respectively. These equations may be solved

for N i
QCD yeilding:

N i
QCD =

Nlooseε
i
non−QCD −N i

isol

εinon−QCD − εiQCD
(5.8)

The expected number of QCD background events in the i-th bin is then given by:

N i
QCDεQCD = εQCD

(
Nlooseε

i
non−QCD −N i

isol

εinon−QCD − εiQCD

)
(5.9)

Error propagation yields that the statistical uncertainty of the estimate is given by:

δN i
QCD

N i
QCD

=
1√
N i
loose

⊕
(

δεinonQCD
εinonQCD − αi

− δεinonQCD
εinonQCD − εQCDi

)
⊕ δαi
εinonQCD

⊕ δεiQCD
εinonQCD − εiQCD

(5.10)

where αi = N i
isol/N

i
loose is the total isolation efficiency of the sample.

Nisol and Nloose can be counted directly by applying the muon event selection. The

additional parameters that must be measured in bins of hadronic recoil are εnonQCD

and εQCD. As W and Z muons behave very similarly (and are assumed to be the

same in this procedure), it is possible to use tag and probe [19], described in detail

in section 5.8.2, to determine εnonQCD from data. The resulting values for εnonQCD in
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Figure 5.10: Isolation efficiency from the tag and probe technique using data (black),
Z → µµ Monte Carlo (blue), and W → µν Monte Carlo (red).

data and Monte Carlo are shown in Figure 5.10. δεnonQCD is taken to be the statistical

errors from this technique and propagated according to equation 5.10.

εQCD is measured in data using a control region and extrapolated with Monte Carlo

to the signal region. The control region consists of all events passing preselection

as described in Table 5.5. In particular, events are required to pass trigger, GRL,

jet cleaning, and primary vertex requirements, and are further required to have a

combined muon with pT at least 15 GeV and no more than 20 GeV. There are no

/ET cuts made as these are heavily correlated with hadronic recoil. This region is

dominated by QCD events, with a small percentage of W , Z, and top backgrounds,

which are removed using Monte Carlo. εQCD is then calculated as a function of
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Figure 5.11: Isolation cut efficiency in the QCD control region (15 < pµT < 20),
calculated as a function of hadronic recoil in QCD Monte Carlo (red), data (black),
and electroweak subtracted data (blue).

hadronic recoil using events in this region. The results are shown in Figure 5.11.

Uncertainties on εQCD include both statistical uncertainties as well as uncertainties

on the electroweak background component.

The estimate of εQCD is extrapolated from the control region to the signal region

using Monte Carlo. For each bin in hadronic recoil, εQCD is calculated in both the

signal and control regions, and the data driven estimate is corrected by the difference

of the two. Conservatively, a systematic uncertainty equal to this correction is added

to the QCD background estimate. To reduce the large statistical uncertainty in the

measurement of εQCD in the Monte Carlo signal region, the Monte Carlo value of
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Figure 5.12: Exponential fit of εQCD in the Monte Carlo signal region. The black
points on the fitted curve are the values of εQCD used to form the correction factor.

εQCD was fit with an exponentially falling distribution and the results of the fit were

used to evaluate the correction factor. Note that this was not necessary for εQCD in

the Monte Carlo control region. The results of this fit are shown in Figure 5.12, and

the resulting corrected εQCD is shown in Figure 5.13. The final QCD background

estimate, with associated uncertainties, is shown in Figure 5.14.

5.5.3 QCD in the Electron Channel

W candidates passing all electron selection requirements except for the /ET require-

ment are used to produce a spectrum of /ET that is fit with templates for QCD and

W , Z, and top samples. A binned maximum likelihood fit is performed in bins of
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WpT using /ET as the discriminating variable in order to estimate the size and shape

of the QCD background.

The signal and W , Z, and tt̄ background templates in /ET are taken from Monte

Carlo samples. The event selection without the /ET cut is applied along with correc-

tions described in section 5.1.4 to produce a template for each sample. An overall

template is then formed by calculating the weighted sum of the individual samples

with weights according to the sample theoretical production cross section. The only

errors on the templates which are considered are Monte Carlo statistical errors.

The QCD background template is derived using a data driven method. Events

are selected for a control region by reversing the quality cuts used to reject QCD

electrons. In particular, the electron must pass the normal requirements but fail

requirements related to the shower shape, the number of high threshold TRT hits,

or must fail isolation requirements. The modified selection was tested on QCD dijet

Monte Carlo in order to confirm that it did not bias the /ET distribution used to form

the template. Systematic uncertainties on the QCD template were formed by taking

the difference in the templates when varying the various quality selection cuts.

5.6 Response Matrix

The response matrix defines the relationship between measured values and true

values, and good modeling of the response matrix is crucial to correctly determining

the W transverse momentum spectrum. This section describes the response matrix
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in general, as well as the formulation used in this analysis to incorporate data driven

estimations of the calorimeter resolution and bias. The eventual goal of this formula-

tion is to invert the response matrix to determine the truth WpT distribution, using

a process known as unfolding, which is described in section 5.7.

5.6.1 Definition

Consider a binned measurement of some variable, such as the pT of the W . There

is an underlying true distribution, t, which is described by the values, ti, in each bin.

There is also a measured distribution, m, which is different from the true distribution

t due to the resolution of the detector. Each event that makes up the true distribution

is measured with some value, which means that each measured bin, mi, may be written

as a weighted sum over the elements of t:

mi =
∑
j

αijtj (5.11)

where the weights, αij, describe the probability of an event in true bin j being recon-

structed in measured bin i. As this is simply matrix multiplication, this relationship

may be written more compactly as:

m = At (5.12)

where A is the matrix of the weights αij and is known as the response matrix.

There are a number of important properties of the response matrix. First, the

degree to which A is diagonal describes the resolution and bias of the detector. That
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is, for a detector with zero bias and infinitely good resolution, the measured value

for each event is identical to the true value, and A is equal to the identity matrix.

Second, A need not be square, as the number of measured and true bins need not be

identical. In particular, this analysis uses roughly twice as many reconstruction bins

as true bins, as this provides more information during the unfolding process. Finally,

it is assumed that every event that makes up the true distribution t also has some

associated measured value. In reality, the event selection is less than 100%, and so

some events within the fiducial volume are not reconstructed. Thus, A describes the

relationship between the true and measured values of selected events, and inverting

this matrix results in a distribution at the truth selected level, which must be further

corrected to the truth fiducial level via efficiency corrections.

5.6.2 Monte Carlo Response Matrix

The simplest response matrix is made using pure signal Monte Carlo. For each

selected event, the true and reconstructed WpT values are used to fill A. This is

shown for muon and electron channels in Figure 5.15.

This response matrix has a number of advantages. First, it is very easy to formulate,

as all of the necessary information is already available. Second, it can be filled with

very high statistics, as it is very easy to produce more Monte Carlo if it is needed.

However, it does not necessarily correctly represent the actual performance of the

ATLAS calorimeter. In particular, as the response of the calorimeter is crucial to a

correct measurement of the true WpT , any differences between simulation and data

performance will bias the measurement. Thus, this analysis uses a more complicated
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Figure 5.15: Monte Carlo based response matrices in the electron and muon channels.

response matrix formulation that allows the direct inclusion of data driven corrections.

5.6.3 Response Parameterization

To a very good approximation, the resolution and bias of the hadronic recoil can

be parameterized as a function of the total transverse energy in the event,
∑
ET

(taken as a scalar sum), and the true pT of the W , ptrueT . In particular, because of the

formulation of the hadronic recoil, there is no need to include the lepton kinematics

in the parameterization.

As defined in equation 5.6, the measured pT is broken into components p‖ and p⊥,

which are parallel and perpendicular to the true pT of the W respectively. For a given∑
ET and ptrueT , both components are distributed according to a Gaussian distribution

to very good approximation. The Gaussian distribution is parameterized according

to three parameters: b(ptrueT ), the bias as a function of ptrueT ; σ‖(
∑
ET ), the parallel

resolution as a function of
∑
ET ; and σ⊥(

∑
ET ), the perpendicular resolution as a
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function of
∑
ET . Mathematically, this can be written as:

p‖(p
true
T ,ΣET ) ∼ ptrueT +G(b(ptrueT ), σ(ΣET )2); (5.13)

p⊥(ptrueT ,ΣET ) ∼ 0 +G(0, σ(ΣET )2). (5.14)

where G(µ, σ2) denotes a Gaussian distribution with mean µ and variance σ2.

Fits to the parameters b(ptrueT ), σ‖(
∑
ET ), and σ⊥(

∑
ET ) in signal Monte Carlo are

shown in Figure 5.16. From the parameterizations, the response matrix is made using

signal Monte Carlo. For each event in the signal Monte Carlo passing event selection,

the p‖ and p⊥ are computed using the simulated ptrueT and
∑
ET . The resulting values

are used to computed a smeared pT via the formula:

pT =
√
p2
‖ + p2

⊥ (5.15)

and the true and smeared pT are used to fill the response matrix. In order to maximize

statistical power, this random sampling is repeated 10 times for each Monte Carlo

event.

To check the quality of the fitting procedure, the reconstruction level values from the

simulation are compared with the result of multiplying the response matrix obtained

via fitting with the true distribution of selected events. The result of this comparison

is displayed in Figure 5.17. A systematic uncertainty due to the parameterization is

calculated by comparing the results of unfolding with the parameterized and Monte

Carlo response matrices, and is discussed in more detail in section 5.9.
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Figure 5.16: Bias and resolution fits in W signal Monte Carlo, for the electron channel
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Figure 5.17: Comparison of the reconstructed simulated sample for each channel
(black) with the result of multiplying the fitted response matrix from channel com-
bined Monte Carlo with the true distribution of selected events (red).

5.6.4 Data Driven Corrections

The parameterization described in the previous section is used because it allows

a straightforward framework for including corrections from data. Z → `` decays

behave very similarly to W → `ν decays except that it is possible to directly measure

the Z pT by combining the momentum of the two selected leptons. As the lepton

resolution is much better than the calorimeter resolution, comparisons between the Z

dilepton pT and Z hadronic recoil pT provide an important probe of the calorimeter

performance.

Z events are selected using the same selection as the W selection described in

section 5.2 except that the /ET and transverse mass requirements are replaced with

a requirement of two oppositely charged leptons with a combined mass between 66

GeV and 116 GeV. In these events, the fitting procedure is repeated, except that the
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dilepton pT is used in place of ptrueT , which is not accessible in data. The bias and

resolution from W Monte Carlo is corrected with the difference between the bias and

resolution in Z data and Monte Carlo according to the formulas:

bcorW = bMC
W + (bdataZ − bMC

Z ), (5.16)

σcorW = σMC
W + (σdataZ − σMC

Z ) (5.17)

A number of assumptions are made in using these corrections. First, it is assumed

that the the properties of Z and W events are very similar. While this is in general

true, to improve the agreement, Z data and Monte Carlo, as well as W Monte Carlo

events are reweighted to match the
∑
ET distribution observed in W data. The dis-

tributions used for this reweighting are shown in Figure 5.18. The difference between

the
∑
ET weighted and unweighted fits is very small, and the full difference is taken

as a systematic for this technique.

It is also assumed that the difference between Z data and Z Monte Carlo is due

entirely to calorimeter resolution. In particular, as the Z events are measured with

respect to the dilepton pT rather than the true boson pT , differences in the data and

Monte Carlo lepton resolution will be counted here. To account for this, the Monte

Carlo lepton momentum measurement is smeared and scaled according to detailed

measurements using the Z mass constraint in data (as described in section 5.8.4).

These corrections are very small compared to the calorimeter resolution differences,

and thus the full difference between applying and not applying them is taken as a

systematic uncertainty.
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Figure 5.18:
∑
ET distributions and weights used in

∑
ET reweighting for W Monte

Carlo (red), Z Monte Carlo (green), and Z and W data (blue and black).
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(b) Full pT range Bias fit
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(c) Parallel resolution fit
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(d) Perpendicular resolution fit

Figure 5.19: Z data bias and resolution in the electron channel.

The resulting fits are shown for the electron channels in Figures 5.19. As described

previously, W signal Monte Carlo is then smeared using the fit results. For each event

in the W signal Monte Carlo passing event selection, the true WpT and
∑
ET in the

event are converted to s a smeared p‖ and p⊥ using the formulas in equation 5.14, and

the reconstructed pT is taken to be the sum in quadrature of p‖ and p⊥. A response

matrix is then built with the resulting values of ptrueT and the smeared pT .
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The use of Monte Carlo in filling the data driven response matrix results in a

small dependence on the Monte Carlo true WpT distribution. In particular, while the

overall shape of the true WpT does not affect the response matrix, the distribution

of WpT within a given bin does. For an extreme example, consider a response matrix

made with two true bins with edges at 0, 50, and 100 GeV, and four reconstruction

bins with edges at 0, 25, 50, 75, and 100 GeV. Further imagine the response of the

detector is perfect, in the sense that b and σ are both identically zero. The response

matrix contains 8 elements: αij for i = 1, 2, 3, 4 and j = 1, 2. To preserve the number

of events, for any truth bin j,
∑

i αij must be 1 - in other words, the matrix must

be column normalized. Thus, changes in the number of events in truth bins 1 and

2 do not affect the produced matrix. However, if the underlying truth distribution

tends to put events in the low region of each truth bin, events in the response matrix

will migrate from bins α21 and α42 will migrate to bins α11 and α32 and the response

matrix will change. Thus, the distribution of true WpT within bins does matter when

filling a response matrix. To account for this, a systematic uncertainty is calculated

by finding the difference between unfolded results using the nominal response matrix,

and one filled with a true distribution reweighted to match the distribution from

RESBOS.

A final source of uncertainty in this procedure is the limited statistics of the Z

sample. During the fitting procedure, the covariance matrix of the fit parameters

are extracted, and, using a large number of pseudoexperiments, the variations of the

resulting response matrices due to sample statistics are examined, and a systematic

calculated. A full discussion of the systematic uncertainty calculations is given in
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section 5.9.

5.7 Unfolding

A central part of the WpT measurement is the correction from the reconstruc-

tion level pT spectrum to the truth level by accounting for detector effects. In the

formulation introduced in the previous section, this is done by solving the equation:

m = At (5.18)

where m is the binned measured distribution, t is the binned true distribution, and

A is the response matrix describing the mapping of ptrueT to precoT . This process, called

unfolding, is difficult for a number of reasons, including imperfect knowledge of m and

A, the introduction of large bin-to-bin correlations in the solution for t, and inherent

bias in the solution. This section describes these challenges, as well as a number

of techniques to overcome them. A full description of the statistical background of

unfolding and other similar inverse problems is available in [4, 51, 54, 38, 52].

5.7.1 Smearing

As with most things in life, the easiest unfolding technique is simply not to unfold

at all. That is, in many cases the goal of the analysis is test a theory, and in those

cases, it is possible to apply the response matrix to the theory rather than attempt to

unfold the measured values. The theory and measurement are then compared at the

reconstruction level, where a χ2 or other difference test may be employed to validate
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the theory.

This strategy has a number of desirable properties. Matrix multiplication is com-

putationally much simpler than matrix inversion, and avoids essentially all of the

pitfalls that will be discussed in the remainder of the section. However, there are a

few limitations to this technique. First, while it is easy to test existing theories, it is

hard for theorists to test future theories with the results, as the folding procedure is

very dependent on detector specifics. This may be somewhat alleviated by publishing

the response matrix as part of the result, but even that is subject to correctly match-

ing conditions in terms of pileup and
∑
ET . Second, it is not possible to use results

from smearing as an input to models that require a truth distribution. For example,

it is difficult to tune Monte Carlo distributions to match experimental data without

the truth spectrum. It is possible to iteratively solve for the best truth spectrum that

folds into the observed data, but that pseudo-unfolding technique has all of the draw-

backs and few of the positives of the unfolding techniques to be discussed. Finally,

with smearing, it is very difficult to combine channel results as they have different

event selection efficiency shaping effects. For these reasons, smearing is not used in

this analysis.

5.7.2 Bin-by-bin

The simplest and most commonly used unfolding technique presented here is known

as bin-by-bin unfolding. For each bin in the measured spectrum, m, a correction

factor, ci, is calculated from a control sample (typically from Monte Carlo simulation)

that describes the ratio of the measured to true spectra in that bin. For example,
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given a simulated sample of measured msim and true tsim, the correction factors are

simply:

ci = msim
i /tsimi (5.19)

For a measured data sample mdata, the final unfolded result is given by:

tdatai = mdata
i /ci =

mdata
i tsimi
msim
i

(5.20)

This technique has a number of advantages. It is very conceptually simple, avoids

complicated error calculations and bin-to-bin correlations, and requires little compu-

tation. However, it has a number of disadvantages as well. Most importantly, as

the name implies, all of the corrections are within a single bin - there are no explicit

bin-to-bin migration corrections. Thus, when bin purities are low, the unfolded result

is highly biased to the control sample used to produce the ci correction factors.

As an example of this bias, consider a dataset with two bins in the true and mea-

sured spectra, and a perfectly modeled response matrix with a large degree of bin to

bin migration:

A =

 a11a12

a21a22

 (5.21)

In this simple case, the matrix can be inverted analytically, yielding a solution for

the unfolded first bin of:
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tdata1 =
1

a11a22 − a12a21

(
a22m

data
1 − a12m

data
2

)
(5.22)

Compare this with the result from bin-by-bin unfolding using a Monte Carlo con-

trol sample. Assuming the Monte Carlo correctly models the response matrix, the

measured spectrum as a function of the true spectrum is given by:

msim
1 = a11t

sim
1 + a12t

sim
2 (5.23)

msim
2 = a21t

sim
1 + a22t

sim
2 (5.24)

Applying the correction factor ci = msim
i /tsimi to the observed data yields a bin-by-bin

unfolded result for the first bin of:

tdata1 =
mdata

1 tsim1

msim
1

= mdata
1

(
tsim1

a11tsim1 + a12tsim2

)
(5.25)

Compare equations 5.22 and 5.25. The analytic result is a linear combination

of observed data, weighted by appropriate factors from the response matrix. The

bin-by-bin unfolded result, however, is the observed data multiplied by a factor that

depends on the truth distribution of the Monte Carlo sample used to produce the

correction factors. For large bin-to-bin migrations (which means a12 far from zero),

variations of the truth distribution of the Monte Carlo will result in variations in the

unfolded value. The larger the migration, the larger this bias.

As it is expected that bin-to-bin migration will play an important role in this

analysis, bin-by-bin unfolding is not used.
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5.7.3 Matrix inversion

In the case where bin to bin migration effects are larger, it is tempting to solve

equation 5.18 by simply inverting the response matrix, A, yielding:

t = A−1m (5.26)

This approach, known as matrix inversion, has a number of benefits. It is con-

ceptually simple and takes advantage of the large amount of work that has gone into

efficiently inverting even large matrices. However, this technique is plagued by a num-

ber of problems. In particular, statistical fluctuations result in large oscillations in

the unfolded spectrum due to the correlations between bins. To combat these fluctua-

tions, a technique known as regularization is used. The specifics of the regularization

parameters and techniques are very analysis specific and can result in large bias in

the final result. This section describes the underlying issues with matrix inversion,

and the techniques used to address them.

Difficulties with Matrix Inversion

Consider the same example used in section 5.7.2, with a 2x2 response matrix A

with elements aij. As before, the inverted solution for the first bin is given by:

tdata1 =
1

a11a22 − a12a21

(
a22m

data
1 − a12m

data
2

)
(5.27)

Assuming that both bins have the same purity, b, this can be rewritten as:

tdata1 =
1

2b− 1

(
bmdata

1 − (1− b)mdata
2

)
(5.28)
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As b decreases towards 50%, the coefficients of m1 and m2 increase dramatically. For

example, at b = 60%, t1 = 3m1−2m2. At b = 55%, t1 = 5.5m1−4.5m2. At b = 51%,

t1 = 25.5m1 − 24.5m2. In general, as the purity decreases, the unfolded solution

becomes a difference between the two measured bins with larger and larger coefficients.

As the measured bins are typically poisson distributed, these large coefficients greatly

amplify otherwise insignificant statistical fluctuations.

A more general example of this amplification of statistical uncertainty due to bin

purity can be seen in an example from [4]. Consider a symmetric response matrix A

(symmetry is not needed in general, but it makes the linear algebra a bit cleaner).

As A is symmetric, it may be decomposed as:

A = UDUT (5.29)

where U is some orthogonal matrix and D is a diagonal matrix with entries equal to

the eigenvalues of A. Applying this transformation to equation 5.18 yields

UTm = DUT t (5.30)

which is simply a rotated version of equation 5.18 as U is orthogonal. This can be

seen by writing m′ = UTm and t′ = UT t, yielding

m′ = Dt′ (5.31)

Now, however, the response matrix D is diagonal, and so can be directly inverted

yielding:
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t′ = D−1m′ → t′i =
∑
j

m′j
λj

uj (5.32)

where λj is the j-th eigenvalue of the original response matrix A. The true value is

given by a sum of terms like m/λ, where m is poisson distributed, and λ becomes

small when bin purities decrease. As with the 2 × 2 case, this division results in

statistical fluctuations that are highly amplified.

Regularization

It is clear that in order to reduce the amplification of small statistical fluctuations,

it is necessary to damp the effect of small eigenvalues that occur when bin purities

decrease. A common approach to this is to expand simple matrix inversion to so called

regularized matrix inversion, where bias is intentionally injected into the solution in

order to decrease oscillations. In particular, this analysis examined a technique known

as Tikhonov regularization [73, 50], which will be described here. These techniques

are particularly appealing because they are already supported in ROOT, via the

TUnfold and TUnfoldSys classes [64, 65].

The fundamental idea behind regularization is that injecting a small amount of

bias can dramatically reduce oscillations and improve the quality of the solution.

Mathematically, this can be stated as a χ2 minimization problem:

χ2 = (At−m)T V−1
m (At−m) + τ 2 (Lt)T (Lt) (5.33)

where Vm is the covariance matrix of the data, τ is the regularization parameter, and

L is a matrix describing the regularization condition.
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Equation 5.33 describes the minimization of two components: the first term repre-

sents the difference between the measured value and the folded truth value, as used in

the iterative smearing described in section 5.7.1; the second term describes a penalty

applied by the regularization condition, which is commonly taken to be the difference

in size between neighboring bins, and will be discussed in more detail shortly. The

regularization parameter, τ , determines how much the solution should depend on the

goodness of the inversion, and how much should depend on the regularization condi-

tion. In particular, for τ = 0, this is equivalent to simple matrix inversion with zero

bias, and for infinite τ , this is equivalent to maximal bias, as the measured value will

be ignored completely.

This formulation has a number of advantages. First, it allows the inclusion of

non-square response matrices, which cannot be accommodated by simple matrix in-

version. In particular, including more measured bins than truth bins adds additional

information to the problem and can improve unfolding results [4].

Second, this formulation may be solved analytically by differentiating χ2 with re-

spect to t:

dχ2

dt
= 0 (5.34)

→ 0 = ATV−1
m (At−m) + (At−m)T V−1

m A + τ 2LT (Lt) + τ 2 (Lt)T L (5.35)

→ ATV−1
m m =

(
ATV−1

m A + τ 2LTL
)

t (5.36)

→ t =
(
ATV−1

m A + τ 2LTL
)−1

ATV−1
m m (5.37)
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The analytic solution allows equation 5.33 to be solved many times very quickly

when doing parameter optimization, as will be discussed shortly.

Third, this formulation allows bias to be injected in order to reduce the impact of

oscillations due to statistical fluctuations. Consider an example presented in [53], in

which, for simplicity, L is taken to be the identity matrix. From equation 5.36, this

yields:

ATV−1
m m =

(
ATV−1

m A + τ 21
)

t (5.38)

As with equation 5.30, it is possible to decompose ATV−1
m A into UΛUT where U

is an orthogonal matrix of eigenvectors, and Λ is the matrix of eigenvalues. Letting

z = ATV−1
m m yields:

(
Λ + τ 21

)
UT t = UTz (5.39)

With b = UTx and c = UTz as before, this yields:

(
Λ + τ 21

)
b = c (5.40)

which may be solved (as Λ is the diagonal matrix of eigenvalues) as:

bi =
ci

λi + τ 2
(5.41)

or, back in the original coordinates:

t =
∑
j

cj
λj + τ 2

uj (5.42)
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This may be compared with the unregularized solution in equation 5.32. They are

equivalent, except that λj → λj + τ 2 in the denominator. The problem of statistical

fluctuations being amplified by small eigenvalues is fixed by the insertion of the τ 2

parameter. Thus, by injecting a small bias in the solution, the oscillations are largely

prevented. The art of regularized unfolding is finding the correct selection of the

amount and type of bias to inject, which corresponds to picking correct values for τ

and for the regularization condition matrix, L.

There are a number of common regularization conditions, including size, derivative,

and curvature. These are described by matrices in the following way:

Lsize =



1 0 0 · · · 0

0 1 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1


Lderivative =



1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −1 1



Lcurvature =



1 1 0 0 · · · 0 0 0

1 −2 1 0 · · · 0 0 0

0 1 −2 1 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · 1 −2 1

0 0 0 0 · · · 0 1 1
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The regularization condition term of equation 5.33 is τ 2 (Lt)T (Lt). In the case

of Lsize, truth distributions which have large entries are penalized. In the case of

Lderivative, truth distributions with large differences between neighboring bins are

penalized. Finally, in the case of Lcurvature, truth distributions with large differences

between the average of the two closest neighboring bins are penalized. This analysis

examined all three regularization conditions, and found that none were suitable. Size

based regularization prefers solutions that are flat, which works poorly for the rapidly

changing W pT distribution. Curvature and derivative based unfolding can have large

edge effects due to their reliance on neighboring bins. This was unacceptable in this

analysis given the importance of the first bin near zero WpT .

The final piece of regularized unfolding is the selection of τ . Several algorithms have

been developed to optimize the value of τ [4, 51, 37] and the L-Curve [50] algorithm

will be presented here. The L-Curve algorithm is based upon balancing the two terms

of the χ2 equation so that the solution is neither under- or over-regulated. Consider

the plot of the two terms of the χ2 equation parameterized by τ shown in Figure 5.20.

Ideally, plots of these two terms have an L shape with three regions. On the left of

the plot is a vertical region, where changing τ does not change the residual, but does

change the amount of regularization. This is the under-regularized region. On the

right hand side of the plot, there is a horizontal region where changing τ does not

change the regularization, but does increase the residual. This is the over-regularized

region, where there is too much bias in the solution. Between the two there is a kink,

which has minimum regularization and residual. The L-Curve algorithm picks this

value of τ by selecting the point at which the curvature is maximized.
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While there are many advantages to this technique, there are also a number of

disadvantages which resulted in the choice not to use this technique for the final result

of this analysis. First, the regularization conditions typically penalize large curvature

or size changes in neighboring bins in order to damp oscillations. In this analysis, the

distribution is rapidly falling, with a quickly rising peak in the first bins. Many times

the χ2 optimization penalized this expected feature which resulted in large (∼ 10%)

biases in the first bins of the final result. Second, the L-Curve technique requires

solving the χ2 equation many, many times in order to generate the curve, which is

very computationally expensive. As the uncertainty propagation framework for this

analysis described in section 5.9 is based heavily upon the use of toy Monte Carlo and

pseudoexperiments, the added computational burden of this technique made things

considerably more difficult. Finally, the L-Curve algorithm has difficulties optimizing

τ when the L-Curve lacks a region of large curvature, which was observed in this

analysis. Because the L-Curves were found to be smooth, the error on the optimal τ

was large, resulting in large overall error.

5.7.4 Bayesian Unfolding

The unfolding technique used for the final result in this analysis is an algorithm

called Bayesian unfolding. Bayesian unfolding is an iterative approach which repeat-

edly solves Bayes theorem using the previous solution as the prior and the response

matrix as the description of the probability of observed data given the true distribu-

tion. A brief description of the pertinent points of the algorithm are given here, with

a more detailed description in [38].
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Bayesian unfolding attempts to determine the probability distribution of true events

given the observed data and the response matrix :

P (t |m,A, I) (5.43)

where, as before, t is the true distribution, m is the measured distribution, A is

the response matrix, and the new variable, I, is the underlying assumptions of the

analysis, which are usually left as implicit.

The probability distribution in equation 5.43 is determined by using Bayes Theo-

rem:

P (t |m,A, I) ∝ P (m | t,A, I) · P (t | I) (5.44)

where the term on the right is the likelihood of the observed data multiplied by

the prior on the underlying truth distribution.

A clear problem with this approach is that the unfolded value with be strongly

influenced by the underlying prior distribution. In particular, if a Monte Carlo model

is used to produce a prior, as is typically the case, the unfolded values will be biased

towards the Monte Carlo, which was the reason for the rejection of the bin-by-bin

approach. Further, this method can suffer from similar problems as seen in the matrix

inversion approach: namely, oscillations due to amplified statistical errors. To solve

both of these problems, Bayesian unfolding uses an iterative smoothing approach

which allows the number of iterations to be used as a regularization parameter.
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The first iteration uses the Monte Carlo truth distribution as the prior. For sub-

sequent iterations, the result from the previous iteration is used as the prior. The

more iterations that are run, the less the bias from the Monte Carlo truth distribution

becomes. However, at the same time, as the bias decreases, the statistical uncertainty

increases, as statistical fluctuations are amplified due to the positive feedback nature

of the system. Thus, the number of iterations serves to balance the strength of the

bias with the size of the oscillations, exactly as the regularization parameter did in

the regularized matrix inversion technique. In general, the number of iterations taken

is small (less than 5), as otherwise the statistical errors become very large.

There are a number of advantages of this technique. As with the other techniques

discussed, it is implemented in the RooUnfold package, which makes using it in ROOT

very simple. Second, it contains only one parameter, the number of iterations, which

is easily understood, and because good solutions occupy a relatively small phase space

in this parameter, it is easy to search and optimize over it. Third, the algorithm is

very fast, which makes uncertainty calculations via toy Monte Carlo and pseudoex-

periments, as described in section 5.9, computationally feasible. Finally, the prior

distribution does not negatively impact the ability of the algorithm to correctly un-

fold the rapidly falling distribution at low WpT , like was observed in the χ2 based

regularized matrix unfolding. For these reasons, with the stability in the rapidly

falling region of the distribution being most important, this analysis uses Bayesian

unfolding for its final result.
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5.8 Reconstruction Efficiency Correction

As the response matrix only accounts for smearing of events that have been recon-

structed, following unfolding it is necessary to correct the WpT spectrum for event

selection efficiency. Using Monte Carlo corrected to match the efficiency observed

in data, the event selection efficiency, εW , is calculated as a function of true WpT .

εW is then used to correct the WpT spectrum from the truth selected level to the

truth fiducial level. This section contains how these corrections and their systematics

uncertainties are calculated.

5.8.1 Efficiency calculation

The event selection efficiency εW is calculated according to:

εiW =

∑
events∈i

wreco∑
events∈i

wtrue
(5.45)

where εiW is the efficiency in the i − th bin in true WpT , wtrue is the pileup vertex

weight, described in section 5.1.4, times the generator weight (which is simply 1 for the

Pythia signal sample used) and wreco is wtrue times the trigger and reconstruction

scale factors, which are the ratio of the efficiency in data to that of Monte Carlo,

measured in bins of pT and η of the lepton. These scale factors are described in more

detail in the next sections. For each bin in WpT , εiW is given by the ratio of the sum

over all events in that true WpT bin and which are reconstructed to the sum over

all events in that bin in true WpT that fall within the fiducial volume. Note that

because of detector resolution effects, this is not a true efficiency, in the sense that
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it is possible for events that do not appear in the fiducial volume (and thus are not

in the denominator) to appear in the numerator. In particular, because of lepton

resolution, it is not uncommon for leptons which fall slightly below the fiducial pT

or ET cut of 20 GeV at the truth level to be selected as passing the reconstruction

requirements. The resulting efficiencies in the muon and electron channel are shown

in Figures 5.21 and 5.22 respectively.

Figure 5.21: Event selection efficiency εW , and its uncertainties, as a function of true
WpT , in the muon channel.

Several sources of uncertainty are considered for the correction factor. First, uncer-

tainties on the trigger and reconstruction scale factors are propagated to the weight

wreco using a method described in section 5.8.2. Second, uncertainties on the efficiency

of the analysis cuts due to detector resolution are estimated by turning the smearing
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Figure 5.22: Event selection efficiency εW , and its uncertainties, as a function of true
WpT , in electron channel.
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and scaling described in section 5.8.4 off, comparing with the nominal result, and tak-

ing the full difference as a systematic uncertainty. Third, the uncertainty due to the

choice of Monte Carlo generator is determined by rerunning the εW calculation with

a Pythia signal sample reweighted to match the W pT spectrum from Alpgen plus

Herwig/Jimmy. The generator uncertainty is taken as the full difference between the

Alpgen result and the nominal result. Finally, a statistical uncertainty is assigned

from the number of simulated events in the signal Monte Carlo. The individual un-

certainties and the total uncertainty is shown in Figure 5.21 for the muon channel

and Figure 5.22 for the electron channel.

5.8.2 Trigger Scale Factors

The trigger scale factor is the ratio of the trigger efficiency measured in data to

that measured in Monte Carlo, and is used to correct the Monte Carlo so that it

more correctly describes the observed data. It is measured relative to reconstructed

leptons, and so can depend on the selection used.

Muon Channel

The muon trigger efficiency was measured using the so-called tag and probe tech-

nique, which uses the Z mass constraint to select a very pure sample of isolated,

high pT muons. The details of this analysis are describes elsewhere [17], but a brief

summary is given here.

Events were selected according to the Collision-like requirements described in sec-

tion 5.2.1, and were required to have two oppositely charged muons passing the high
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pT muon requirements, with an combined invariant mass within 15 GeV of the nomi-

nal Z mass, and differences in d0 and z0 of less than 2 mm. As the events are selected

using the trigger under study, trigger matching (described in detail in section 4.2.2)

is used. A muon is called a tag if it matches to a passed trigger object from the

event filter chain under study. The other muon is then called a probe, and the trigger

efficiency is taken to be the fraction of probe muons which then match to a passing

trigger object from the event filter chain under study. Note that if both muons pass

the trigger, then both will count as a tag and a probe. The result of this efficiency

measurement for EF mu13 MG and EF mu13 MG tight are shown in Figures 5.23 and

5.24. As two triggers are used, the final scale factor is taken to be the luminos-

ity weighted average of the individual trigger scale factors. Trigger scale factors are

shown as a function of muon η in Figure 5.25, and are calculated as a function of

both η and pT for the analysis.

Figure 5.23: The efficiency of the muon trigger EF mu13 MG in data as a function of
muon pT [17]. The scale factor is the ratio of the efficiency in data to the efficiency
of EF mu10 MG in Monte Carlo (not shown.)
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Figure 5.24: The efficiency of the muon trigger EF mu13 MG tight in data as a function
of muon pT [17]. The scale factor is the ratio of the efficiency in data to the efficiency
of EF mu10 MG in Monte Carlo (not shown.)

Figure 5.25: The trigger scale factor for EF mu13 MG (left plot) and EF mu13 MG tight

(right plot) as a function of muon η [17]. Red circles are for positive muons and blue
triangles are for negative muons.
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The uncertainties on the trigger scale factor in the muon channel are described in

detail in [17] and include statistical uncertainties, as well as systematic uncertainties

that are evaluated by changing the muon selection requirements and the Z candidate

selection. The scale factor and uncertainties are expressed as functions of muon

kinematics and must be propagated in order to express them as a function of true

WpT . To correctly calculate the resulting correlated errors, the following formula is

used:

σεW
2

εW 2
=

(
∑
i,j

σtijwtrueij)
2

(
∑
i,j

tijwtrueij)
2

(5.46)

where i and j are indices running over bins of reconstructed muon pT and η, σtij is

the uncertainty on the trigger scale factor in one bin of pT and η, tij is the trigger

scale factor, and wtrueij is the vertex weight of events falling in the i-th, j-th bin.

Electron Channel

The electron trigger efficiency is very close to one and was measured in data relative

to reconstructed Medium and Tight electrons using Z tag and probe [44]. In both

selections the data and Monte Carlo efficiencies are consistent within statistical error,

as shown in table 5.8, and so no trigger scale factor is applied to the electron channel.

Offline Medium Offline Tight

Data 98.67 ± 0.10 99.03 ± 0.09
MC 99.235 ± 0.006 99.538 ± 0.005

Scale Factor 0.9943 ± 0.0010 0.9950 ± 0.0009

Table 5.8: Trigger efficiency in the electron channel for Monte Carlo and data and
for Medium and Tight electrons [44].
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5.8.3 Reconstruction Scale Factors

The reconstruction scale factor is the ratio of the measured reconstruction efficiency

in data and in Monte Carlo and is used to correct the Monte Carlo to more correctly

model the observed data. In general, this represents inefficiencies in the quality cuts

used in selecting high pT leptons. For muons, this is largely mismeasurements in the

transition region of the muon spectrometer, and for the electrons, this is largely due

to problems in electron identification.

Muon Channel

The measurement of the muon reconstruction scale factor is also made using the

tag and probe technique, which is described in detail in [66]. Events are selected

according to the Collision-like requirements described in section 5.2.1. In selected

events, tags and probes are then formed. A tag is a muon passing all the high pT

muon requirements in section 5.2.1, while a probe is an inner detector track passing

all the of ID quality, pT , and |η| requirements. An event is selected if a tag and probe

combination is found with ∆d0 and ∆z0 less than 2 mm, ∆φ > 2, and a combined

mass within 10 GeV of the nominal Z mass. The muon reconstruction efficiency is

then taken to be the fraction of probe tracks matching to a combined muon and is

calculated as a function of inner detector track η, as shown in Figure 5.26.

The uncertainty on the reconstruction scale factor is dominated by systematic un-

certainty, of which the main component is background contamination. This uncer-

tainty is propagated to εW using equation 5.46 in a similar way to the trigger scale

factor. The two relative scale factor uncertainties are summed in quadrature.
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Figure 5.26: Muon reconstruction efficiency and scale factor as a function of inner
detector η [66].
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Electron Channel

The electron identification efficiency was measured similarly using Z tag and probe

[44]. The resulting scale factors as well as their uncertainties are shown in table 5.9.

The propagation of these uncertainties to εW was done similarly to the muon channel

using equation 5.46.

Eta bin [−2.47,−2.01] [−2.01,−1.52] [−1.37,−0.8] [−0.8, 0]
SF tight 0.925 ± 0.034 0.995 ± 0.024 1.006 ± 0.021 0.982 ± 0.018

Eta bin [0, 0.8] [0.8, 1.37] [1.52, 2.01] [2.01, 2.47]
SF tight 0.987 ± 0.018 1.033 ± 0.025 1.028 ± 0.045 0.936 ± 0.034

Table 5.9: Electron identification efficiency and scale factor measured using tag and
probe [44].

5.8.4 Resolution Smearing and Scaling

The lepton momentum resolution plays two important roles in this analysis. First,

it affects the selection efficiency. In particular, for some values of WpT , the lepton pT

requirement can be in the region of rapidly rising pT spectrum. In these cases, the

efficiency increases with worsening resolution. Second, it affects the measurement of

the data driven response matrix, as differences between the Monte Carlo and data

lepton resolutions can be interpreted as differences in calorimeter resolution. To

correctly account for this, both the electron ET and muon pT in Monte Carlo are

smeared and scaled using values determined from data driven techniques using the Z

mass constraint.
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Muon Channel

Differences between the muon momentum resolution in the data and in Monte

Carlo are largely driven by misalignment, which is typically heavily dependent on

the region of the detector that the muon passed through. The dimuon mass peak

of the observed Z data was fit using templates built from Monte Carlo and a χ2

minimization was performed on the smearing and scaling parameters in order to

maximize the agreement. The full details of the analysis are described in [16].

Muon scaling is performed according to the equation:

pT → pT (1 + C) (5.47)

for the |η| dependent scaling factors shown in table 5.10.

Correction |η| < 1.05 |η| < 1.7 |η| < 2.0 |η| < 2.5

C -0.00066 -0.0011 0.012 0.0049
∆pID2 0.000403 0.000913 0.001273 0.002667
∆pMS

1 0.02619 0.067 0.0377 0.0407
∆pMS

2 0.00018 0.00018 0.00018 0.0005

Table 5.10: Correction factors for muon smearing and scaling from muon resolution
studies [16].

Muon momentum smearing is performed separately on the inner detector and muon

spectrometer tracks of the muon, and then the correction to the combined pT is taken

as a weighted sum of the corrections to the parts. The muon spectrometer pT is

smeared according to:
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pT (MS)→ pT (MS)×
(
1⊕ f(0, 1)×∆pMS

1 ⊕ f(0, 1)×∆pMS
2 × pT

)
(5.48)

where f(0, 1) is a normally distribution random number, and pMS
i is an |η| dependent

correction factor shown in table 5.10.

The inner detector pT is smeared according to:

pT (ID)→ pT (ID)×
(
1⊕ f(0, 1)×∆pID2 × pT

)
(|η| < 1.9) (5.49)

and

pT (ID)→ pT (ID)×
(
1⊕ f(0, 1)×∆pID2 × pT/ tan2 θ

)
(|η| > 1.9) (5.50)

where pID2 is an |η| dependent correction factor shown in table 5.10.

The combined muon pT is then corrected by:

pT (CB)→ pT (CB)×
[
1 +

∆pMS
T /σ(MS)⊕∆pT (ID)/σ(ID)

1/σ(MS)⊕ 1/σ(ID)

]
(5.51)

where ∆pT is the smearing correction for either the muon spectrometer or inner

detector measurement, and σ is the expected resolution of the detector for that pT .

This mirrors the measurement of combined muon pT normally done by the tracking

software.

Electron Channel

As with the muon channel, detailed studies of Z decays in data have shown that

there are disagreements between the electron ET resolution in data and in Monte
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Carlo. The details of these studies are shown in [45]. The electron energy is corrected

according to the equation:

E → E + f(0, 1)

√(
S.(1 + ∆S).

√
E
)2

+ (C.(1 + ∆C).E)2 −
(
S.
√
E
)2

− (C.E)2

(5.52)

where f(0, 1) is a normally distributed random number, as before, S and C are

the correction factors given in table 5.11, and ∆S and ∆C are their respective un-

certainties.

Eta bin [0.0, 1.4] [1.4, 2.5]

S 0.1 ± 0.2 0.1 ± 0.2
C 0.007 ± 1.0 0.007 ± 4.0

Table 5.11: Sampling and constant terms and their systematic uncertainties in Barrel
and Endcap [45].

The quality of the smearing is assessed by comparing the Monte Carlo and data Z

peaks. Prior to smearing, the prediction is shown in Figure 5.27, and after smearing

in 5.28.

5.9 Calculation of Uncertainties

Unfolding and normalization introduce non-negligible correlations between bins in

the final result. Because of this, the uncertainty propagation framework in this anal-

ysis is based around the production and propagation of covariance matrices. The

uncertainties on the background estimation described in section 5.5 are converted

to covariance matrices after unfolding using pseudo-experiments. The uncertainties
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Figure 5.27: Z → ee invariant mass distribution in data (red) and Monte Carlo (blue)
before smearing is applied to the Monte Carlo. Events from the barrel are on the left,
and those from the endcap are on the right [45].

Figure 5.28: Z → ee invariant mass distribution in data (red) and Monte Carlo (blue)
after smearing is applied to the Monte Carlo. Events from the barrel are on the left,
and those from the endcap are on the right [45].
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on the response matrix and those due to bias of the unfolding algorithm are also

reported as covariance matrices and combined with the background covariance ma-

trices. Finally, the uncertainties on the efficiency correction described in section 5.8

are combined, and the final, normalized result is presented with a covariance matrix

for both the statistical and systematic uncertainties. The statistical uncertainty of

the result is also determined using pseudo-experiments, as the unfolding introduces

non-trivial statistical correlations. This section describes the details of the calculation

of the covariance matrices, which are listed in Table 5.12, and their propagation to

the final answer.

Source Covariance Name Evaluation Method

QCD Bkg Subtraction VQCD Pseudoexperiments
WZ Bkg Subtraction VWZ Pseudoexperiments
top Bkg Subtraction Vtt̄ Pseudoexperiments∑
ET reweighting Vsumet On/Off comparison

Lepton resolution and scale Vsmearing On/Off comparison
Generator dependence Vtruth Comparison with RESBOS
Fit parameterization Vfit Comparison with Generated
Fit statistics Vfitstats Pseudoexperiments
Unfolding Bias Vbias Closure Test

Unfolding Statistical Errors V unfolding
stat Pseudoexperiments

Efficiency correction Veff Analytic Propagation

Table 5.12: Sources of uncertainty.

5.9.1 Statistical Formulation

A number of uncertainty calculations in this analysis use pseudo-experiments, in

which either the response matrix or the background estimate is fluctuated and a

covariance matrix is produced. The statistical formulation of this process is described
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here.

Consider a histogram, x, with n bins, whose elements are x = x1, . . . , xn. For each

pseudo-experiment, a new histogram, xj, with elements xj = xj1, . . . , x
j
n is produced.

Three quantities are built from this set of p measurements.

First, the average histogram, E is defined by

Ei =
1

p

∑
j

xji (5.53)

Next, the covariance matrix V is defined by

Vij =
1

(p− 1)

∑
k

[(
xki − Ei

) (
xkj − Ej

)]
(5.54)

The covariance matrix has a number of nice properties. In particular, the diagonal

elements are the square of the standard deviation of that bin. Ignoring correlations

between bins, then, one may plot the square root of the diagonals to represent the

uncertainty. This also means that for uncorrelated uncertainties, summing in quadra-

ture is equivalent to adding covariance matrices. However, because the covariance

matrices include the absolute variance of each bin, and there are large variations in

the number of entries per bin in this analysis, it is difficult to visualize uncertainties

using covariance matrices. For example, if the first bin has 10,000 events with an

uncertainty of 1%, while the last bin has 10 entries with an uncertainty of 10%, the

diagonal element of the covariance matrix for the first bin will be roughly 10,000 times

larger than that for the last bin.
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To allow easier visualization, a third quantity, the correlation matrix, ρ, is also

calculated:

ρij =
Vij√
ViiVjj

(5.55)

The correlation matrix has the nice property that the diagonals are, by construc-

tion, 1, and the off diagonals are between −1 and 1. Entries which have correlations

near 1 tend to vary up and down together, while those with correlations near −1 tend

to vary oppositely, and entries with correlations near 0 tend to be independent.

5.9.2 Background Subtraction

The background uncertainties described in section 5.5 are converted to a covariance

matrix in a two step process. First, the background estimations are varied within their

uncertainties over 1000 trials. Next, the data is background subtracted using the

estimated background for each trial, and unfolded. The resulting covariance matrix

formed from the unfolded results of the pseudoexperiments is used as the uncertainty

for the background subtraction.

The backgrounds are broken into three groups: W/Z style backgrounds (W →

τν, Z → ``, and Z → ττ), top style backgrounds (tt̄ and single top), and the

QCD background. The uncertainties are broken into two types: shape uncertainties,

which are considered 100% uncorrelated bin-to-bin, and scale uncertainties, which are

considered 100% correlated bin-to-bin. For the W/Z and top backgrounds, the shape

uncertainties are taken to be the statistical uncertainty, the PDF uncertainty, and the
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scale factor uncertainties, while the scale uncertainty is taken to be the cross section

uncertainty. For the QCD, the total uncertainty is taken as a shape uncertainty.

For each pseudo-experimental trial of the background variations, the background

estimate is produced as follows. First, a luminosity is picked according to a gaus-

sian distribution centered around the nominal value with a width of 3.4%. The W/Z

and top backgrounds are scaled according to this luminosity, while the QCD is left

unchanged. Next, for the W/Z and top backgrounds, a scale value is picked from

a gaussian distribution centered around one, with a width given by the scale uncer-

tainty, and the background group is scaled by that amount. Note that this technique

accounts for the fact that the cross section uncertainties on the W/Z and top style

backgrounds are correlated within the group, but not correlated to each other. Fi-

nally, for each background group, the estimate is changed bin by bin according to

the shape uncertainty. In order to allow visualization of the uncertainty due to each

source, each trial actually produces four background estimates: one where only the

W/Z backgrounds are varied, one where only the top backgrounds are varied, one

where only the QCD is varied, and one where all three are varied simultaneously.

As there are small correlations between the samples (due mainly to the luminosity

appearing in both W/Z and top backgrounds), only the final estimate, where all three

groups are varied, is used in the final analysis.

The pseudo-experiment variations of the backgrounds then are translated into co-

variance matrices. For each trial, the estimated background for that variation is sub-

tracted from the observed data, and the result is unfolded using the nominal response
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matrix. The uncertainty covariance matrices for the background subtraction, which

are termed VWZ , Vtt̄, VQCD, and VBKG are calculated over the pseudo-experiments

according to equation 5.54. The resulting diagonals of the covariance matrix, for

each background varied separately, along with all three varied at once, is shown for

the muon channel in Figure 5.29 and for the electron channel in Figure 5.30, while

the correlation matrices are shown in Figures 5.31 and 5.32 respectively.
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Figure 5.29: Diagonal elements of background uncertainty covariance matrices for
the muon channel broken down by sample, and for the total background. The data
statistical uncertainty is shown for comparison.
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Figure 5.30: Diagonal elements of background uncertainty covariance matrices for
the electron channel broken down by sample, and for the total background. The data
statistical uncertainty is shown for comparison.

5.9.3 Response Matrix

There are two types of uncertainties on the response matrix which are considered

here. The first type is due to fluctuations in the formulation of the response due

to the limited statistics of the data and Monte Carlo samples. Covariance matrices

for these types of uncertainties are calculated by sampling from the fitting functions

described in section 5.6, producing many copies of the response matrix varied within

error, and then unfolding. This process is repeated for 100 trials. The second type is



Chapter 5: WpT 173

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

W pT (GeV)
0 50 100 150 200 250 300

W
 p

T
 (

G
eV

)

0

50

100

150

200

250

300

(a) QCD

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

W pT (GeV)
0 50 100 150 200 250 300

W
 p

T
 (

G
eV

)

0

50

100

150

200

250

300

(b) W/Z

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

W pT (GeV)
0 50 100 150 200 250 300

W
 p

T
 (

G
eV

)

0

50

100

150

200

250

300

(c) Top

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

W pT (GeV)
0 50 100 150 200 250 300

W
 p

T
 (

G
eV

)

0

50

100

150

200

250

300

(d) Total

Figure 5.31: Correlation matrices for the background uncertainty of the muon channel
broken down by sample, and for the total background.

due to uncertainties in the formulation of the response matrix from the reweighting

procedure described in section 5.6. Covariance matrices for these types are produced

by folding the sample with the nominal response matrix, and then unfolding with

the response matrix under study. As each contribution is independent, the resulting

covariance matrix for the uncertainty of the response matrix is taken as the sum of

the covariance matrices produced in these studies.

Fluctuations in the fitting results of the response matrix formulation are propagated

to the systematic covariance matrix by performing pseudo-experiments in which the
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Figure 5.32: Correlation matrices for the background uncertainty of the electron
channel broken down by sample, and for the total background.

fit parameters are varied within their allowed errors. First, the nominal fits are per-

formed on the Z data, the W Monte Carlo, and the Z Monte Carlo, and the parameter

errors and covariances are recorded. For each pseudo-experiment, the fit parameters

for all three data samples are sampled from the fit errors using Cholesky decomposi-

tion (see [70] for the ROOT implementation used in this analysis) in order to correctly

account for the correlations between the fit parameters. The filling of the response

matrix described in section 5.6 is then repeated with the sampled fit parameters,

and a new response matrix is produced. The background subtracted data is then
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unfolded with each produced response matrix, and the systematic covariance matrix,

called Vfitstat is produced from the trials according to the formulation described in

section 5.9.1.

Systematic uncertainties for the reweighting and fitting procedure described in

section 5.6 are produced by comparing the results of unfolding signal Monte Carlo with

the various weightings removed with the nominal unfolding. Four types of systematics

are considered.

While Pythia is used to form the nominal response matrix, it is necessary to

determine the effects of the underlying truth distribution used to sample the fitted

response matrix. To determine this, the signal Monte Carlo is unfolded with the data

driven response matrix sampled using Pythia Monte Carlo and another sampled

using Pythia Monte Carlo that has been reweighted to match the WpT spectrum

produced by the Resbos generator. For comparison, a similar procedure is done

with the WpT spectrum produced by the Alpgen generator, but this is not used as

the Alpgen predictions are highly inconsistent with the reconstruction level WpT

spectrum.

Similarly, the effects of
∑
ET reweighting and lepton resolution smearing and scal-

ing are probed by comparing the results of unfolding the signal Monte Carlo with∑
ET reweighting and lepton momentum smearing turned off with the results of un-

folding with the nominal response matrix. Finally, the effects of the fitting procedure

itself are considered by comparing the results of unfolding with a response matrix

built by fitting the signal Monte Carlo with a response matrix built by simply filling
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the matrix with the truth and reconstructed values of the Monte Carlo.

In all cases, the maximum difference in any bin is conservatively taken as the

systematic for all bins, and a diagonal covariance matrix is built for each source using

those values. This results in four systematic covariance matrices, termed Vsumet,

Vsmearing, Vtruth, and Vfit. The diagonal elements of these covariance matrices are

shown for the muon channel in Figure 5.9.3 and for the electron channel in Figure

5.9.3, while the correlation matrix for the fit statistical uncertainty is shown in Figures

5.35 and 5.36 respectively.

5.9.4 Unfolding

Two sources of unfolding uncertainty are considered in this analysis. First, the

unfolding algorithm tends to enlarge the statistical errors on the sample, as well

as produce correlations between bins. This statistical uncertainty is calculated by

poisson fluctuating the Monte Carlo 100 times and comparing with the nominal truth

distribution. Second, there is a small but non-negligible systematic uncertainty due

to inherent bias in the unfolding algorithm. This is calculated by folding and then

unfolding the same sample with the nominal response matrix.

To calculate the statistical uncertainty following unfolding, which is used as the

final statistical uncertainty for the result, pseudo-experiments involving poisson fluc-

tuating the Monte Carlo are used. For each trial, the reconstructed signal Monte

Carlo is scaled to the number of events observed in data after background subtrac-

tion, and each bin value is sampled according to a poisson distribution with parameter
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(b) Lepton resolution uncertainty
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(d) Generator Dependence - Resbos
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(e) Fit Parameterization uncertainty
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Figure 5.33: Diagonal elements of the covariance matrix for uncertainties from the
response matrix of the muon channel, broken down by source. For all but the fit
statistical uncertainty, the maximum difference in any bin is shown as the dotted line
and is used as the systematic in all bins. Note that the Alpgen result is not used in
the final systematic.
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(b) Lepton resolution uncertainty
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(c) Generator Dependence - Alpgen
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(d) Generator Dependence - Resbos
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(e) Fit Parameterization uncertainty
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Figure 5.34: Diagonal elements of the covariance matrix for uncertainties from the
response matrix of the electron channel, broken down by source. For all but the fit
statistical uncertainty, the maximum difference in any bin is shown as the dotted line
and is used as the systematic in all bins. Note that the Alpgen result is not used in
the final systematic.
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Figure 5.35: Correlation matrix for the fit statistical uncertainty for the muon channel.
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Figure 5.36: Correlation matrix for the fit statistical uncertainty for the electron
channel.
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equal to the number of entries in the bin after scaling. The fluctuated reconstruction

level Monte Carlo is then unfolded using the nominal response matrix, and the an-

swer is compared with the unfluctuated Monte Carlo truth distribution for selected

events. The resulting difference is used to fill the covariance matrix for the statistical

uncertainty after unfolding, termed V unfolding
stat .

The other source of uncertainty in the unfolding process is the bias of the algo-

rithm. This is understood by dividing the Monte Carlo into two samples: a sample

for building the response matrix, and a sample for evaluating the systematic. The

reconstructed Monte Carlo distribution of the second sample is then unfolded using

a response matrix built from filling the truth and reconstruction values from the first

sample. The result is then compared with the truth distribution in the second sam-

ple for selected events, and the full bin-by-bin difference is taken as the systematic

uncertainties. A diagonal covariance matrix, Vbias, is built using these uncertainties.

The diagonal elements of the unfolding statistical and systematic covariance matrices

are shown for the muon channel in Figure 5.37 and for the electron channel in Figure

5.38, while the correlation matrices for the unfolding statistical uncertainty are shown

in Figures 5.39 and 5.40 respectively.

5.9.5 Efficiency Calculation

The efficiency correction uncertainties are typically small compared with other un-

certainties, and the efficiency corrections themselves are relatively flat. Thus, we

consider uncertainties on the efficiency to be bin-by-bin uncorrelated, and use a di-

agonal covariance matrix to represent its uncertainties.
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Figure 5.37: Diagonal elements of the covariance matrix of the muon channel for
systematic and statistical uncertainties due to unfolding.
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Figure 5.38: Diagonal elements of the covariance matrix of the electron channel for
systematic and statistical uncertainties due to unfolding.
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Figure 5.39: Correlation matrix for the unfolding statistical uncertainty for the muon
channel.
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Figure 5.40: Correlation matrix for the unfolding statistical uncertainty for the elec-
tron channel.
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5.9.6 Propagation and Normalization

In general, the propagation of uncertainties which are not correlated among each

other is accomplished via simple addition of the covariance matrices. However, for

more complicated operations like unfolding and efficiency correction, the propagation

of the matrices becomes more complicated. The precise steps used to propagate the

statistical and systematic uncertainties are described here.

The observed data is initially assigned a systematic covariance matrix of all zeroes,

and a diagonal statistical covariance matrix with entries equal to the number of en-

tries in each bin of the data. After background subtraction, the statistical covariance

matrix is unchanged, while the systematic covariance matrix is taken to be a diagonal

covariance matrix with the simple errors described in section 5.5. These uncertainties

are used only for visualizing the results at this stage, and then are removed for the

unfolding step. Following unfolding, the covariance matrices described in the pro-

ceeding section are used. The statistical covariance matrix of the data is taken from

the results of the process described in section 5.9.4, while the systematic covariance

matrix is taken to be the sum of the covariance matrices described in sections 5.9.2,

5.9.3, and 5.9.4.

Mathematically, the uncertainties after unfolding are given by:

Vstat = V unfolding
stat

where Vstat is the statistical covariance matrix of the data, and V unfolding
stat is the sta-

tistical covariance due to unfolding that is determined using pseudo-experiments as
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described in section 5.9.4 and

Vsyst = VBKG + Vbias + Vsumet + Vsmearing + Vtruth + Vfit + Vfitstat

where Vsyst is the systematic covariance matrix of the data, VBKG is the covariance

matrix of background uncertainties, Vbias is the covariance matrix of the unfolding

bias, and Vsumet, Vsmearing, Vtruth, Vfit, Vfitstat are the various response matrix covari-

ance matrices.

The efficiency correction step requires a division, which results in an amplification

of the covariance matrix. To simplify this calculation, as discussed, the covariance

matrix for the efficiency correction is assumed to be diagonal. The statistical covari-

ance matrix is updated as follows:

V i,j
stat →

V i,j
stat

εiεj
(5.56)

where V i,j
stat is the ij-th entry of the data statistical covariance matrix and εi is the

value of the efficiency correction in the i-th bin. Similarly, the systematic covariance

matrix is updated by:

V i,j
syst →

V i,j
syst

εiεj
, i 6= j (5.57)

V i,i
syst →

x2
i

ε2i

(
V i,i
syst

x2
i

+
σ2
i

ε2i

)
(5.58)

where xi is the unfolded measurement (before efficiency correction) in the i-th bin,

and σi is the uncertainty on the i-th bin of the efficiency correction.
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Following efficiency correction, the last step is normalization. Typically, scaling by

a number simply multiplies the covariance matrix by that number squared. However,

in the case of normalization, the operation itself introduces correlations between bins.

For example, in a two binned histogram, fluctuations up in the first bin result in

smaller results for the second bin after normalization. To account for this effect, the

following normalization procedure is used in this analysis:

Consider a histogram with bins x1, . . . , xn, and a covariance matrix V. The trans-

formation x→ y transforms the covariance matrix by:

V→ AVAT (5.59)

where Aij =
[
δyi
δxj

]
. Let N =

∑
i xi be the total number of events and Ni = N − xi

be the sum of events not in the i-th bin. Then, the normalization transformation is

xi →
xi

Ni + xi
(5.60)

which yields

Aii =
Ni

N2
(5.61)

Aij =
−xi
N2

, i 6= j (5.62)

Both the final statistical and systematic covariance matrices are transformed ac-

cording to equation 5.59 using the above values.
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5.10 Results

Following event selection, described in sections 5.2, the WpT spectrum is back-

ground subtracted using the background estimation described in section 5.5. The

results of this are shown in Figure 5.41 for the muon channel, and Figure 5.43 for

the electron channel, with the uncertainties shown in Figures 5.42 and 5.44. The

background subtracted spectra are compared with reconstruction level Pythia sig-

nal Monte Carlo.

The uncertainty on the background subtracted spectrum in the muon channel is

dominated by statistical uncertainties beyond 50 GeV. Below 50 GeV, there is a

roughly flat 1% uncertainty due the the W and Z backgrounds, with an additional

2% uncertainty due to the QCD estimate. At higher pT , the QCD becomes negligible,

but the uncertainty due to the top background estimation becomes more important.

Comparison between the observed data and the Monte Carlo reveals a large difference

at very low pT , where the data is far below the Monte Carlo. This is due to the fact

that the resolution in data is worse than in the Monte Carlo, and the data driven

response matrix has not yet been used to correct for this effect. The electron channel

displays similar behavior.

The observed spectrum is then unfolded using iterative Bayesian unfolding, de-

scribed in section 5.7.4, using 3 iterations, and the channel combined data driven

response matrix described in section 5.6. The uncertainties are calculated according

to the methods described in section 5.9. The results of the unfolding, compared with

the truth level distribution of events passing event selection from Pythia Monte Carlo
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Figure 5.41: Muon sample after background subtraction compared with reconstruc-
tion level Pythia signal Monte Carlo. The deviation is defined as the difference
between the data and Monte Carlo divided by the sum in quadrature of their
uncertainties.
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Figure 5.42: Uncertainties after background subtraction for the muon channel.
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Figure 5.43: Electron sample after background subtraction compared with recon-
struction level Pythia signal Monte Carlo. The deviation is defined as the differ-
ence between the data and Monte Carlo divided by the sum in quadrature of their
uncertainties.
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Figure 5.44: Uncertainties after background subtraction for the electron channel.
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are shown in Figure 5.45 for the muon channel and in Figure 5.47 for the electron

channel. The associated statistical and systematic correlation matrices are shown

in Figures 5.49 and 5.50 respectively, and the diagonal elements of the covariance

matrices are shown in Figures 5.46 and 5.48.

Following unfolding, the deviation between Monte Carlo and data is no longer

present, as the data driven corrections to the response matrix have been applied to

correct the differences in resolution. The muon channel systematic uncertainty is

roughly flat in pT at 5 %, with a small increase near 30 GeV due to uncertainty in the

QCD background estimate. The dominant component of the systematic uncertainty

is due to the fit parameterization. As wider bins are used at truth level than at

reconstruction level, the statistical uncertainty has gone down and is only dominant

above 100 GeV. The electron results are similar, with a higher overall systematic

uncertainty due to larger uncertainties in the background estimations.

The unfolded spectrum is then corrected to the fiducial volume via a Monte Carlo

based efficiency correction described in section 5.8. The results of this correction are

shown in Figure 5.51 for the muon channel and Figure 5.53 for the electron channel

and are compared with the truth level distribution of events in the Pythia signal

Monte Carlo that fall within the fiducial volume. The statistical and systematic

correlation matrices are shown in Figures 5.55 and 5.56, with the diagonal elements

shown in Figures 5.52 and 5.54.

The results after efficiency correction are very similar to those after unfolding.

There is a slight increase in the systematic uncertainty for the muon channel above 100
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Figure 5.45: Muon sample after Bayesian unfolding compared with truth level
Pythia signal Monte Carlo from events passing event selection. The deviation is
defined as the difference between the data and Monte Carlo divided by the sum in
quadrature of their uncertainties.

0 50 100 150 200 250 300

E
rr

or
 [%

]

0

5

10

15

20

25

30

35
Data Statistical Error

Data Systematic Error

MC Truth Selected Statistical Error

Figure 5.46: Diagonal elements of covariance matrix following unfolding for the muon
channel.
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Figure 5.47: Electron sample after Bayesian unfolding compared with truth level
Pythia signal Monte Carlo from events passing event selection. The deviation is
defined as the difference between the data and Monte Carlo divided by the sum in
quadrature of their uncertainties.
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Figure 5.48: Diagonal elements of covariance matrix following unfolding for the elec-
tron channel.
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(b) Systematic Correlation Matrix

Figure 5.49: Statistical and systematic correlation matrices following Bayesian un-
folding for the muon channel.
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Figure 5.50: Statistical and systematic correlation matrices following Bayesian un-
folding for the electron.
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GeV due to differences between Monte Carlo models of the event selection efficiency.

The electron channel has a significantly larger uncertainty on the estimate of the

efficiency due to poorer Monte Carlo statistics and differences between the lepton

energy resolution in Monte Carlo and data.

The final step is to normalize the distribution. This is done according to the

procedure described in section 5.9.6. The results of the normalization are shown in

Figure 5.57 for the muon channel and Figure 5.59 for the electron channel. The final

statistical and systematic correlation matrices are shown in Figures 5.61 and 5.62,

with diagonal elements of the covariance matrices shown in Figures 5.58 and 5.60.

The final results show good agreement between the observed data and the Monte

Carlo predictions, as well as between the two channels. The normalization process

decreases the systematic uncertainty slightly at low pT (as those bins tend contain

most of the events), while increasing the systematic uncertainty at higher pT . The

muon channel result is dominated by statistical uncertainty beyond 150 GeV. Below

that, it is dominated by systematic uncertainties, which are primarily due to the

parameterization scheme used in deriving the data driven response matrix and, at

lower pT , the estimate of the QCD background. The electron channel result is sys-

tematically limited across the entire pT range, and is dominated by the estimate of

the selection efficiency and the QCD background. Strong anti-correlations between

bins can be seen, especially in the region below 50 GeV.
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Figure 5.51: Muon sample after efficiency correction compared with truth level
Pythia signal Monte Carlo from events within the fiducial volume. The deviation
is defined as the difference between the data and Monte Carlo divided by the sum in
quadrature of their uncertainties.
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Figure 5.52: Diagonal elements of covariance matrix following efficiency correction
for the muon channel.
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Figure 5.53: Electron sample after efficiency correction compared with truth level
Pythia signal Monte Carlo from events within the fiducial volume. The deviation
is defined as the difference between the data and Monte Carlo divided by the sum in
quadrature of their uncertainties.
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Figure 5.54: Diagonal elements of covariance matrix following efficiency correction
for the electron channel.
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Figure 5.55: Statistical and systematic correlation matrices following efficiency cor-
rection for the muon channel.
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Figure 5.56: Statistical and systematic correlation matrices following efficiency cor-
rection for the electron channel.
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Figure 5.57: Muon sample after normalization compared with truth level Pythia
signal Monte Carlo from events within the fiducial volume. The deviation is defined
as the difference between the data and Monte Carlo divided by the sum in quadrature
of their uncertainties.
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Figure 5.58: Diagonal elements of covariance matrix following normalization for the
muon channel.
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Figure 5.59: Electron sample after normalization compared with truth level Pythia
signal Monte Carlo from events within the fiducial volume. The deviation is defined
as the difference between the data and Monte Carlo divided by the sum in quadrature
of their uncertainties.
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Figure 5.60: Diagonal elements of covariance matrix following normalization for the
electron channel.
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Figure 5.61: Statistical and systematic correlation matrices following normalization
for the muon channel.
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Figure 5.62: Statistical and systematic correlation matrices following normalization
for the electron channel.
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5.11 Conclusions

This thesis has presented a measurement of the WpT spectrum in proton-proton

collisions at
√
s = 7 TeV corrected back to the fiducial volume of the ATLAS detector

in both the muon and electron channels. The observed data was found to be in good

agreement with the theoretical predictions made by the Pythia generator tuned to

the W and Z transverse momentum spectra at the Tevatron up to a WpT of 300 GeV.

The results are statistically limited beyond 150 GeV, with a systematic uncertainty

of less than 7% below 150 GeV. This measurement has the broadest pT range, the

largest statistics sample, and the best statistical power of any measurement of the

WpT spectrum performed to date.

As this measurement is statistically limited at high pT , the breadth of this mea-

surement can be extended by increasing the size of the dataset used. This analysis

used 125k W → µν and 105k W → eν from roughly 30 pb−1 collected in 2010, but it

is predicted that more than 30 times as much data will be collected in 2011. At lower

pT , the uncertainties are dominated by a 4 % systematic due to the parameterization

of the resolution that was necessary in order to include data driven corrections using

such a small Z → `` sample. With a much larger control sample, it will be possible

to increase the complexity of the parameterization and improve the quality of the fit,

resulting in a smaller uncertainty. Use of the 2011 dataset, combined with improved

techniques for estimating the QCD background shape, will likely result in measure-

ments at the 2% level in the pT region below 100 GeV and extending the high pT

region to beyond 500 GeV.
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