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Abstract

This thesis presents a measurement of the mass, natural width, and signal strength,

defined as the yield normalized to the Standard Model prediction, of the Higgs boson

in the H → ZZ(∗) → 4` decay channel using an approach which utilizes event-by-

event detector response information. The measurement is performed on p-p collision

data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The

data corresponds to an integrated luminosity of 25 fb−1 with center-of-mass energies

of 7 TeV and 8 TeV. The measured mass of the Higgs boson is mH = 124.57+0.48
−0.43 GeV.

The signal strength was estimated at µ = 1.76+0.46
−0.37. Finally, the natural width of the

Higgs was determined to be < 2.6 GeV with 95% confidence. The event-by-event

approach used in this analysis involves the parameterization of the behavior of single

leptons in the ATLAS detector and the convolution of a mass response with the Higgs

truth distribution to derive the reconstruction level signal model.
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Chapter 1

Introduction

In 1964, Peter Higgs, François Englert, Robert Brout, Gerald Guralnik, C. R.

Hagen, and Tom Kibble [12–14] developed the Higgs mechanism to give mass to

the weak vector bosons, the W± and the Z. This Higgs mechanism predicted the

existence of a scalar boson, known as the Higgs boson.

Nearly 50 years later, in 2012, the ATLAS and CMS collaborations discovered

a new particle with a mass of about 125 GeV using data from p-p collisions at the

Large Hadron Collider (LHC) [15, 16]. The ATLAS observation was based on an

integrated luminosity of 4.9 fb−1 at a center of mass energy
√
s = 7 TeV and 5.8 fb−1

at
√
s = 8 TeV. The discovery was the result of a combination of analyses searching

for the Higgs decay in the H → WW (∗) → `ν`ν, the H → ZZ(∗) → 4`, and the

H → γγ channels. In these channels, ` refers to electrons and muons only.

With the Higgs discovery, our focus shifted from discovery to measurement. This

dissertation presents a measurement of the Higgs mass and width in theH → ZZ(∗) →

4` decay channel using the combined 2011 and 2012 ATLAS dataset with an integrated
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luminosity of 25 fb−1. The mass of the Higgs is not predicted by Standard Model

(SM) of particle physics. A direct measurement is essential to check the consistency

of the SM and put constraints on the existence of new physics. The total decay width

of the Higgs boson is predicted by the SM to be ∼ 4.1 MeV. Any deviation from this

would indicate the presence of new physics that couples to the Higgs sector.

The measurement of the mass and width of the Higgs boson must overcome a

number of challenges. The small branching ratio for H → 4` yields few Higgs candi-

dates. The off-shell Z(∗) in the decay chain produces low-momentum leptons, hence

understanding the efficiency of such leptons is important to increase the channel ac-

ceptance. To estimate the Higgs mass and decay width, it is necessary to develop

signal and background models that can be used to fit the data. These models are

made using Monte-Carlo templates and event-by-event techniques. In the event-by-

event technique, the behavior of the leptons in the ATLAS detector is parameterized

using lepton response functions. These lepton response functions are combined into

mass response functions which can then be convolved with the shape of the Higgs res-

onance to produce an invariant mass signal model. Using these models, a combined

probability density function is written which can then be used to fit Monte-Carlo and

data to determine the expected and observed limits on the Higgs mass and width.

The dissertation is arranged in the following manner. Chapter 2 describes the the-

oretical understanding of the Higgs boson, its production and decay modes. Further-

more, the measurement of the mass and decay width of the Higgs boson is motivated.

Chapter 3 discusses the Large Hadron Collider, while in Chapter 4, the ATLAS de-

tector is introduced. Chapter 5 covers the performance of the muon reconstruction
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algorithms and the corrections which bring the Monte-Carlo (MC) simulated data

into agreement with ATLAS data. Such agreement is needed for understanding the

effect of cuts and models. The measurement of the reconstruction and identification

efficiency for low momentum muons using the J/ψ resonance is also discussed at

length in Chapter 5.

The selection of Higgs candidate events is described in Chapter 6. These selec-

tions are chosen to reduce the Higgs backgrounds and provide a sample with high

significance, S/
√
B. Using the candidate events selected in Chapter 6, we turn our

attention to the measurement of the mass and width of the Higgs boson in Chapter 7.

To perform this measurement, various signal and background models are needed which

describe the shape of the signal and background distributions. Chapter 8 summarizes

the results, putting them in context with other ATLAS and CMS measurements.
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Chapter 2

Theory

2.1 The Standard Model

The Standard Model (SM) of particle physics is the culmination of a century of

theoretical and experimental breakthroughs in the field of particle physics. The SM

describes all of the known forces, with the exception of gravity, and all of the currently

observed fundamental particles: both fermions and bosons. Furthermore, it predicts

the existence of a scalar boson, the Higgs boson, that allows the vector bosons of the

electroweak force to acquire mass while preserving their gauge symmetry. The force

carrying bosons of the Standard Model are found in Table 2.1. The fermions in the

Standard Model are shown in Table 2.1. In the SM, the fermions have a spin of 1
2
,

while the force carrying bosons have a spin of 1. Additionally, for each particle there

is a corresponding antiparticle which has the same mass and opposite charge.
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Table 2.1: Bosons in Standard Model and their properties [9].

Force Symbol Name Mass [GeV] Charge [e]

Electromagnetism γ photon 0 0

Weak
Z Z boson 91.1876 0
W+ W+ boson 80.385 +1
W− W− boson 80.385 -1

Strong g gluon 0 0

Table 2.2: Fermions in Standard Model and their properties [9].

Generation Symbol Name Mass [MeV] Charge [e] Boson Couplings

First

e electron 0.511 -1 γ, W±/Z
νe electron neutrino < 0.001 0 W±/Z
u up quark 1.7− 3.1 2/3 γ, W±/Z, g
d down quark 4.1− 5.7 -1/3 γ, W±/Z, g

Second

µ muon 105.6 -1 γ, W±/Z
νµ muon neutrino < 0.001 0 W±/Z
c charm quark ∼ 1290 2/3 γ, W±/Z, g
s strange quark ∼ 100 -1/3 γ, W±/Z, g

Third

τ tau 1776.8 -1 γ, W±/Z
ντ tau neutrino < 0.001 0 W±/Z
c charm quark ∼ 1290 2/3 γ, W±/Z, g
b bottom quark ∼ 4.19 -1/3 γ, W±/Z, g

2.1.1 The Glashow-Weinberg-Salam Theory of Weak Inter-

actions

Fundamentally, quantum field theory provides the mathematical basis for the

Standard Model of particle physics. In quantum field theory, the Lagrangian is the

fundamental equation that encapsulates the parameters and interactions of particles.

By applying the local gauge symmetries of a Lagrangian (e.g. SU(2) or U(1)) to

write the covariant derivative, massless gauge boson field(s) can be read off. For the

electromagnetic and strong interactions, this procedure causes the photon and gluon
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fields to emerge from the theory with coupling parameters measured by experiment.

The weak force is known to have massive force carriers, the W± and Z bosons. Adding

an explicit mass term causes the theory to be non-renormalizable, as an increasing

number of tuning parameters are required to cancel divergences when calculating the

terms from higher order diagrams. To solve these problems, Glashow, Weinberg, and

Salam developed a theory of weak interactions which utilizes the Higgs mechanism to

give mass to the weak gauge bosons [17,18]. To do this, they introduce a field, φ, which

obeys SU(2) and U(1) gauge symmetries. This means that the gauge transformation

of this field can be written as:

φ→ eiα
aσa/2eiβ/2φ (2.1)

Where the σa are the Pauli-matrices, and αa and β are arbitrary phases for the gauge

transformation. The three Pauli matrices are written as:

σ1 =

0 1

1 0

 (2.2)

σ2 =

0 −i

i 0

 (2.3)

σ3 =

1 0

0 −1

 (2.4)

The potential term of the Higgs Lagrangian, L = (Dµφ)†Dµφ−VH seen in Figure 2.1,

is chosen to be:

VH = −µ2φ†φ+ λ
(
φ†φ
)2

(2.5)
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Figure 2.1: The Higgs potential, VH = µφ†φ+λ
(
φ†φ
)2

, split into the < (φ) and = (φ)
plane.

So as to give a vacuum expectation value at:

〈φ〉 =
1

2

(
0

v

)
(2.6)

Where v ≡
√

µ2

λ
. The parameters λ and µ are field strength couplings in the

potential. A gauge transformation where α1 = α2 = 0 and α3 = β will make φ → φ

and leave the field invariant. The covariant derivative of φ is:

Dµφ =

(
∂µ − i

1

2
gAaµσ

a − i1
2
g′Bµ

)
φ (2.7)

In which Aaµ and Bµ are gauge fields corresponding to the U(1) and SU(2) symmetry

groups with coupling constants of g and g′ respectively. Evaluating the (Dµφ)†Dµφ
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component of the Lagrangian at the vacuum expectation value gives:

∆L =
1

2
(0 v)

(
1

2
gAaµσ

a +
1

2
g′Bµ

)(
g

1

2
Abµσb +

1

2
g′Bµ

)(
0

v

)
(2.8)

Evaluating with the Pauli-matrices gives the following:

∆L =
1

2

∣∣∣∣∣∣∣
gA3

µ + g′Bµ gA1
µ − igA2

µ

gA1
µ + igA2

µ −gA3
µ + g′Bµ


0

v


∣∣∣∣∣∣∣
2

(2.9)

Using the following basis:

W±
µ ≡

1√
2

(
A1
µ ∓ iA2

µ

)
(2.10)

Z0
µ ≡

gA3
µ − g′Bµ√
g2 + g′2

(2.11)

Aµ ≡
g′A3

µ + gBµ√
g2 + g′2

(2.12)

The matrix multiplication yields:

∆L =
(vg

2

)2

W+
µ W

−µ +
1

2

(
v
√
g2 + g′2

2

)2

ZµZ
µ + 0 (AµA

µ) (2.13)

This indicates the existence of two massive charged vector bosons, W±
µ , with a mass

of:

mW± =
gv

2
(2.14)

A single neutral vector boson, given by the Zµ field, with a mass of:

mZ =
1

2
v
√
g2 + g′2 (2.15)

And a final massless scalar field, Aµ. A mixing angle between the coupling coefficients

g and g′ can be introduced which is defined as g′/g ≡ tan θW which yields the familiar

relationship MW/MZ = cos θW .

8



Chapter 2: Theory

2.1.2 The Higgs Boson

In addition to giving mass to the Electroweak gauge bosons, the Higgs mechanism

predicts the existence of a scalar Higgs boson [18]. The Higgs field can be expanded

around the vacuum expectation value (v.e.v.) using another real-valued field h (x) by

writing:

φ (x) = U (x)
1√
2

 0

v + h (x)

 (2.16)

In which U (x) represents a general SU(2) gauge transformation. By using the unitary

gauge in which α1 = α2 = 0 and α3 = β, the gauge transformation goes to unity

U(x)→ 1. As discussed before, the Higgs Lagrangian that gives the non-zero vacuum

expectation value is:

L = |Dµφ|2 + µ2φ†φ− λ
(
φ†φ
)2

(2.17)

Leading to a vacuum expectation value at φ = 1√
2

(
0
v

)
where v ≡

√
µ2/λ. By substi-

tuting Equation 2.16 into Equation 2.17, one obtains:

L = |Dµφ|2 + µ2h2 + λvh3 +
1

4
λh4 (2.18)

Noticing that the term −µ2h2 looks like a mass term, one can define mH =
√

2µ

which leads to the following simplification:

L = |Dµφ|2 +
1

2
m2
Hh

2 +

√
λ

2
mhh

3 +
1

4
λh4 (2.19)

To evaluate the kinetic term of the Higgs Lagrangian, |Dµφ|2 , the substitution v →

v + h(x) is made into Equation 2.13:

∆L =

[
m2
WW

µ +W−
µ +

1

2
m2
ZZ

µZµ

](
1 +

h

v

)2

(2.20)

9



Chapter 2: Theory

This indicates that the Higgs to W boson coupling is ∝ 2
m2

W

v
W µ +W−

µ h while the

Higgs to Z boson coupling is ∝ m2
Z

v
Zµ +Z−µ h [18]. These couplings indicate that the

Higgs can couple to W+W− or ZZ pairs.

2.1.3 Higgs Production at the LHC

As discussed above, the Higgs mechanism gives mass to the W± and Z bosons.

In addition, a new particle, the Higgs boson, is predicted. The Higgs mass is not

constrained because mH =
√

2λv and λ is a free parameter in the theory. The

allowable vertices between the Higgs and the other particles of the Standard model

are known, and these couplings depend on measurable parameters and the mass of

the Higgs itself. Some of these parameters are not known to a high precision, such as

the mass of the top quark and the W boson. Despite this, the production rates and

decay branching ratios of the Higgs at a proton-proton collider like the Large Hadron

Collider (LHC) can be calculated to a fairly high-precision.

As protons are themselves a conglomeration of three valence quarks (two ups and a

down), sea quarks (of all flavors), and gluons, a vast array of Higgs production modes

are available. The relative strengths of these production modes are determined by

the Feynman vertices and the momentum fraction carried by each of the partons

g

g

Hb, t

Figure 2.2: A Feynman diagram showing the most common Higgs production mode
at the LHC: gluon-gluon fusion.
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H

q

q̄

q′

q̄′

W±

W∓

Figure 2.3: A Feynman diagram showing the lowest order Feynman diagram for Higgs
production through vector boson fusion.

involved in the production. The most common Higgs production mode is that of

gluon-gluon fusion. The lowest order Feynman diagram for this production mode is

shown in Figure 2.2. The next most common production mode is known as vector

boson fusion (VBF), and the lowest order Feynman diagram displaying this process

is seen in Figure 2.3. In the case of VBF, a quark and antiquark fuse through vector

bosons to create a Higgs. This production mode is notable because it invariably

includes two jets in the final state which can be used to select these events.

The third most common production mode is associated production. In associated

production, the Higgs is produced along with secondary particles. Adding the mass

of these particles to the total energy of the final state makes their production less

likely and renders these cross-sections smaller. The secondary particle, however, can

make analyses in these channels somewhat easier, as the associated particle provides

a means of tagging “interesting” events that could contain a Higgs produced in this

mode. The first of these associated production modes is called vector boson associated

Higgs production (with a W or Z boson). In this case two quarks fuse, creating a

virtualW or Z boson that then radiates a Higgs; this is also known as Higgs-strahlung.

This is seen in Figures 2.4 and 2.5. Antiquarks carry a small fraction of the proton’s

11
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H

q

q̄′

W ∗

W

Figure 2.4: A Feynman diagram showing W boson, Higgs associated production.

H

q

q̄

Z∗

Z

Figure 2.5: A Feynman diagram showing Z boson, Higgs associated production.

momentum, and this helps to account for the low production cross section for these

associated production modes. The Higgs can also be produced along with a top

quark-antiquark pair, as shown in Figure 2.6.

Figure 2.7 summarizes the production cross-sections for the Higgs boson as a

function of the mass of the Higgs. For p-p collisions with a center of mass energy

of 8 TeV, gluon-gluon fusion is the dominant production mode. The VBF channel,

labeled pp→ qqH in the Figure, accounts for approximately 10% of the gluon-gluon

H

g

g

t

t̄

t

t̄

Figure 2.6: A Feynman diagram showing Higgs tt̄ associated production.
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Figure 2.7: The Higgs production cross sections for p-p collisions with a center of
mass energy

√
s = 8 TeV and their dependence on the mass of the Higgs [1].

fusion process. The associated production modes represent smaller contributions to

the total Higgs production. They are labeled pp → WH, pp → ZH, and pp → ttH

respectively in Figure 2.7.

2.2 Higgs Decay

The Higgs, upon production, will almost immediately decay into various particles.

The decay, like the production, is mediated by the Higgs couplings. Couplings to

fermions are proportional to the mass of the fermion. The couplings to the vector

boson are more complex but they scale with the mass of the vector boson in question.

Certain decay modes, however, will involve more than a single vertex. Some of these,
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H t

γ

γ

Figure 2.8: The lowest order Feynman diagram showing the Higgs decay to two
photons. The top quark loop can be replaced with another charged fermion or a W±

loop.

H

Z

l−

Z

l+

l−

l+

Figure 2.9: The lowest order Feynman diagram showing the Higgs decay to two Z-
bosons, at least one of which will be off-shell for mH = 125 GeV. Each of the Z-bosons
then decays leptonically.

like the decay of the Higgs to two photons will involve a top quark loop, and others,

like the decay of the Higgs to ZZ to 4-leptons, will have intermediate decay products

which are produced before the final state particles that are observed in the detector.

One of the most important decay modes for measuring the mass is the Higgs decay to

two photons. The Feynman diagram showing this process is seen in Figure 2.8. This

mode is useful because the energy of photons can be measured with good precision.

Another decay mode, and the subject of this thesis, is the Higgs decay to two Z-

bosons each of which then decays leptonically. The lowest order Feynman diagram

representing this decay is seen in Figure 2.9.

In addition to the vertex factors, the Higgs decay will be affected by the available

phase space for a given Higgs mass. For example, when the mass of the Higgs is

less than about 182 GeV, the Higgs will not have the kinematic phase space to decay
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into two real Z-bosons, and, thus the decay to ZZ will be suppressed, as one of the

Zs would necessarily be off-shell. In Figure 2.12, the various branching fractions are

shown as a function of the Higgs mass. The branching fraction is the ratio of the

decay width divided by the total decay width of the Higgs boson (i.e. the sum of the

decay widths for all channels).

Using the knowledge that the Higgs mass is near 125 GeV, H → bb̄ is the dominant

process for the majority of the mass range. This is because the b-quark is the heaviest

fermion for the entire kinematic phase space since mH < 2mt. Given that the top

quark mass is about 173 GeV, the Higgs decay to tt̄ will be heavily suppressed because

kinematically both top quarks would have to be highly off-shell. Practically speaking,

H → bb̄ is a difficult channel in which to measure the Higgs. This is because b-

quark jets are produced in large numbers by the proton-proton collisions at the LHC.

Furthermore, the poor jet energy resolution makes it difficult to resolve the wide

signal mass shape against the large multi-jet background. Like the bb̄ channel, a

Higgs decay to cc̄ or two gluons would suffer from many of the same problems.

The next most massive fermion is the tau lepton, τ . The tau is a fermion, but

unlike the muon and electron, it decays quickly to a W boson and a neutrino. This

decay can either be hadronic, as seen in Figure 2.10 or leptonic, as seen in Figure 2.11.

Complex algorithms are used to tag these tau-decays and to separate them from

similar events that do not involve a tau decay.

The H → WW decay dominates the mass region around 140 GeV. This is the

point in phase space at which it is possible to produce two real W -bosons. The

H → WW analysis can be performed in different sub-channels. The fully hadronic
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τ±

ντ

q̄′

q

W±

Figure 2.10: The lowest order Feynman diagram showing hadronic tau decay.

τ±

ντ

l±

νl

W±

Figure 2.11: The lowest order Feynman diagram showing leptonic tau decay.

sub-channel, where both W bosons decay hadronically is difficult at the LHC because

of the large jet background produced by p-p collisions. There is a semi-hadronic mode

where one W decays to a lepton and a neutrino and the other decays hadronically.

Again, this suffers from high backgrounds. The third mode occurs when both W -

bosons decay leptonically. This has the benefit that leptons are well measured by

ATLAS. The neutrinos, however, cannot be reconstructed in the ATLAS detector,

and therefore, it is not possible to directly measure the mass of the Higgs. Kinematic

variables such as the “transverse mass” are used to separate signal from the back-

grounds. Though the H → WW → `+ν`−ν channel is very useful for measuring the

Higgs production cross section, it is poor for measuring the mass of the Higgs, and it

provides very weak constraints on the Higgs mass.

Like the H → WW , the H → ZZ sees a sharp uptick in relative production cross-

section when both Z bosons are real (i.e. where mH > 2mZ). Muons and electrons
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Figure 2.12: The dependence of the Higgs decay branching fraction on the Higgs mass
for various decay modes [2].

are very well-measured by the ATLAS detector, and thus, excellent mass resolution

can be achieved when both Z-bosons decay to lepton pairs. The other decay channels,

in which the Zs decay to some combination of leptons, jets, and neutrinos, are less

suited to precise mass measurements.

Although the Higgs cannot couple directly to the massless photon, it is possible

for the Higgs to decay to photons through a fermionic loop, as seen in Figure 2.8. This

loop of virtual fermions suppresses the decay. Despite a poor signal to background

ratio, the shape of the background is very continuous, and the Higgs will appear as

a sharp peak on a continuous and falling background. This makes the channel very

important when measuring the mass of the Higgs boson.
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2.3 Mass of the Higgs Boson

Through radiative corrections, precision measurements of the Standard Model

parameters can be used to measure or constrain unknown parameters by performing a

global fit that utilizes electroweak precision measurements and theoretical predictions.

Before the discovery of the Higgs and including the direct limits from Higgs searches,

this procedure was able to constrain the Higgs mass to 120+12
−5 GeV [19].

Including the mass of the Higgs boson in the global fit over-constrains the elec-

troweak sector of the SM. This over-constraint can be used to check the consistency

of the SM. By allowing the measured SM parameters to vary within their statistical

and systematic uncertainties, it is possible to perform a global fit. The value of the

fitted parameters is then compared to their experimentally measured values and the

p-value representing the compatibility of the data with the SM hypothesis can be

calculated.

2.4 Width of the Higgs Boson

In the SM, the natural width of the Standard Model Higgs boson can be calculated

because all Higgs couplings to fermions and bosons are specified by the mass of the

Higgs and the mass of the decay products. Knowing these couplings makes it possible

to sum the partial width of each decay mode. As these couplings depend on the Higgs

mass, the natural width of the Higgs can be described as a function of the Higgs mass.

This dependence is shown for the SM Higgs boson in Figure 2.13. If the Higgs width

were measured by experiment to be larger than the SM prediction, it would indicate
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Figure 2.13: Theoretical prediction of the total width of the Higgs boson as a function
of the mass of the Higgs boson [1].

the presence of new particles to which the Higgs boson could decay. For this reason,

Higgs width measurements can be used to probe the existence of new physics that

couples to the Higgs sector.

As will be discussed later, the invariant mass resolution from the ATLAS detector

is about 1-2 GeV for a 4-lepton Higgs event. Therefore, the measured limit on the

width of the Higgs boson will be near this characteristic resolution. The decay width

of the Higgs is around 4 MeV for a mass of 125 GeV. To increase the Higgs width to

the GeV-scale, the partial decay width to these new particles must be on the GeV

scale.
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The Large Hadron Collider

3.1 Introduction

At the end of the twentieth century, the Standard Model of particle physics was

all but complete. Every particle predicted had been observed with the most recent

discovery being the top quark, discovered in 1995 at Fermilab. In 2008, a new hadron

collider constructed at the European Organization for Nuclear Research (CERN) was

inaugurated. This machine, the Large Hadron Collider (LHC), was built to uncover

the last piece of the Standard Model: the Higgs boson.

3.2 Specifications

The LHC is a particle collider located near Geneva, Switzerland [20]. It was

built in the circular tunnel (26.695 km in circumference) used by the previous gener-

ation Large Electron-Positron (LEP) collider. Although the tunnel itself was left
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unchanged, the inner workings were changed dramatically. The magnets, radio-

frequency (RF) cavities, and other collider apparatus were removed and replaced

with state of the art equipment. Figure 3.1 shows a section of the LHC tunnel after

the installation of the LHC in the former LEP tunnel. Within the tunnel is a beam-

pipe housing the two proton beams, traveling in opposite directions. These are housed

side-by-side in a joint casing. An schematic showing this side-by-side configuration

is seen in Figure 3.2. To control and focus the beam, a large variety of magnets are

used. These range from dipoles to decapoles and each serves a different purpose. The

primary steering magnets are the main dipole magnets. These copper-clad niobium-

titanium magnets are cooled using liquid helium to 1.9 K and they provide the dipole

field of 8.33 Teslas required to curve the proton beams in a circle. Each dipole, seen in

Figure 3.2, is 15 m long and weights 35 tonnes. The dipoles are physically built into

the beamline with two dipoles adjacent to each other to steer the opposing beams.

A total of 1,232 superconducting dipole magnets curve the beam while an additional

392 superconducting quadrupole magnets focus the beam.

To collide the beams, additional magnets are used to bring the two opposing

beams together and focus them to converge at the interaction point. The products of

the resultant collisions are then measured using the detectors discussed in Section 3.4

that are built around the LHC interaction points.

Though designed for p-p collisions with a center of mass energy of 14 TeV and an

instantaneous luminosity of 1034 cm−2s−1, the currently achieved values are somewhat

lower. During LHC Run-11, the highest p-p center of mass energy achieved was 8 TeV

1LHC Run-1 corresponds to the 2010, 2011, and 2012 data taking periods at the LHC
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Figure 3.1: A picture of the LHC tunnel showing a section of the beamline. The blue
tube on the left is the outside of one of the main dipole magnets.

and the peak instantaneous luminosity obtained was 7.7 × 1033 cm−2s−1. The LHC

was designed to collide lead-lead nuclei with a 2.8 TeV per nucleon energy and an

instantaneous luminosity of 1027 cm−2s−1. The design specifications for the LHC

proton beams and the performance achieved in the 2011 and 2012 runs can be found

in Table 3.2. The final row in Table 3.2 refers to the maximum (over all runs in a

given year) of the mean number of hard scattering events per run. This number is

a measure of the “in time pileup” which is defined as the number of hard scattering

events that occur in a given bunch crossing. In contrast, the “out of time pileup” refers

to the additional collisions from previous bunch crossings that are being recorded

simultaneously by the detector.

22



Chapter 3: The Large Hadron Collider

Table 3.1: Design specifications of the LHC proton beams and the values achieved
during the 2011 and 2012 runs [10,11].

Property Design Specification 2011 2012

Energy per Beam [TeV] 7 3.5 4
Peak Luminosity [cm−2s−1] 1034 3.7× 1033 7.7× 1033

Bunches per beam 2808 1380 1380
Bunch spacing [ns] 25 70/50 50
Protons per bunch 1.15× 1011 1.45× 1011 1.7× 1011

β∗ [m] 0.55 1.0 0.6
Maximum 〈Np〉 19 17 37

Figure 3.2: A schematic showing the structure of the main LHC dipole magnets.
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3.3 Accelerator Complex

Figure 3.3: A schematic of the CERN accelerator complex with the accelerators
labeled.

Figure 3.3 shows a schematic of the CERN accelerator complex. To accelerate

protons to 4 TeV a series of linear and circular accelerators are used. The protons

start as Hydrogen gas and are accelerated to∼ 50 MeV by a linear particle accelerator,

LINAC 2. These are then injected into a small Proton Synchrotron Booster which

increases their energy to 1.4 GeV. From here, the protons are injected into the Proton

Synchrotron which raises their energy to 26 GeV. After this, they enter the Super

Proton Synchrotron (SPS) which produces protons with an energy of 450 GeV. At

this stage, the beam can finally be injected into the Large Hadron Collider (LHC)

which accelerates the ‘beam to its final collision energy. The beams are the collided
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resulting in a center of mass energy of 7 or 8 TeV. Collisions with the design center

of mass energy of 14 TeV are currently scheduled for the 2015 run.

3.4 Experiments

On the LHC, there are four interaction points that have detectors located at them.

These detectors are the ATLAS detector, the CMS detector, the ALICE detector,

and the LHCb detector. ATLAS and CMS are general purpose detectors optimized

to measure the Higgs, Supersymmetry, and the Standard Model. ALICE is a detector

which is specialized to measure heavy ion (Pb-Pb) collisions. LHCb is designed to

make precision B-physics measurements. Two additional LHC experiments, LHCf

and TOTEM, do not have their own interaction point. Instead they are built around

one of the main interaction points, for LHCf, this is ATLAS and for TOTEM, this is

CMS. LHCf seeks to measure neutral pions produced at the LHC collisions to gain

a better understanding of cosmic rays while TOTEM is designed with detectors at

very high pseudo-rapidity, η, to measure the proton-proton interaction cross section

and study diffractive physics in the non-perturbative regime of Quantum Chromody-

namics (QCD).
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The ATLAS Detector

The ATLAS detector was designed to perform a diverse array of physics mea-

surements using the high luminosity p-p collisions provided by the LHC. A primary

motivation was the desire to search for the Higgs boson and, if found, measure its

properties. As discussed in Chapter 2, the Higgs boson can decay to a large array

of final states. These final states involve a combination of particles including muons,

electrons, jets, b-quark jets, and neutrinos. To measure these particles requires high-

precision tracking and calorimetry which can operate in the high luminosity environ-

ment of the LHC.

The ATLAS detectors must be able to precisely measure the momentum and en-

ergy of particles in the presence of high pileup, and the detectors must have good

time resolution to determine which bunch crossing the particles originated from. The

detectors themselves and their readout electronics must be able to withstand the ra-

diation from the high luminosity LHC collisions for many years before being replaced.

The radiation hardness of the detectors is particularly critical in the forward regions
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where the particle flux is the highest.

Figure 4.1 shows a three-dimensional representation of this same ATLAS geom-

etry while Figure 4.2 shows a cross-sectional view of the ATLAS detector. Closest

to the interaction point is the inner detector (ID) that is intended to provide precise

vertexing and tracking for charged particles originating from the interaction point.

Beyond the inner detector, there are two layers of calorimetry. The first, known

as the electromagnetic (EM) calorimeter, is intended to stop electron and photon

showers and measure their energy. The hadronic calorimeter (HCAL), located be-

yond the electromagnetic calorimeter is designed to measure the energy deposition of

hadronic jets. The last component of the detector is the muon spectrometer (MS).

Because muons tend to lose only a few GeVs during their transit, most will simply

pass through the detector without stopping. To properly measure the momentum of

high momentum muons, it is imperative to have a high magnetic field to curve the

track and a large distance over which the curvature of the track can be determined.

Generally, neutrinos, will pass through the detector without interacting. Their exis-

tence can be inferred through the conservation of momentum. Combining tracking

and calorimetery is particularly important for the measurement of electrons and jets.

The calorimetric resolution scales inversely with the square root of the energy:

δE

E
∝ 1√

E
(4.1)

In comparison, tracking momentum resolution scales linearly with the momentum:

δp

p
∝ p (4.2)

For electrons and hadrons, these resolutions complement each other. Low momen-

tum/low energy electrons can be well-measured by the tracking system while high
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energy/high momentum electrons will be poorly measured by the tracking but (rela-

tively) well measured by the calorimeter.

Figure 4.1: A schematic of the ATLAS detector with important detector elements
labeled [3].

28



Chapter 4: The ATLAS Detector

Figure 4.2: A cross-section view of the ATLAS detector showing how different types
of particles interact and are measured by the detector.

4.1 Coordinates

In the ATLAS detector, the pseudorapidity is defined by η ≡ − ln
[
tan
(
θ
2

)]
where

θ is the polar angle of the particle; θ = 0 is the direction perpendicular to the beam-

line, θ = π/2 points to the C-side of the detector, and θ = π points to the A-side of

the detector. The other angle, φ is the azimuthal angle defined to be 0 when pointing

toward the center of the accelerator ring. Using these coordinates, the transverse

momentum, pT, and the momentum, p are related by |p| = pT cosh η. The angular

distance between two tracks, ∆R, is defined to be
√
η2 + φ2.
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4.2 Magnet System

In the high energy regime of the LHC, nearly all particles are moving at speeds

indistinguishable from the speed of light. As a result, it is not possible to measure the

momentum of these particles by measuring their speed. To determine the momentum,

it is necessary to apply a force on them and then measure the effect of that force on

their motion. The Lorentz force on a charged particle in a magnetic field is given by:

~F =
d~p

dt
= q~v × ~B (4.3)

There are three separate magnet systems each with their own cooling and cabling.

These are the Central Solenoid, the Barrel Toroid, and the End-cap Toroid. The

solenoid and toroids bend the charged tracks in the ID and MS respectively making

it possible to measure the track momentum. All the magnets are made from aluminum

stabilized Cu/Nb/Ti superconducting material and they are kept at 4.5 K using a

liquid Helium cryogenic system [3].

4.2.1 Central Solenoid

The ATLAS Central Solenoid provides a 2 Tesla magnetic field [4] [21]. The

solenoid is designed to be as thin as possible so as to avoid adding material that could

stop particles before they can be measured by the calorimetry system. The solenoid

coil has an inner diameter of 2.46 m and an outer diameter of 2.56 m. Axially, the

length of the cylinder is 5.8 m. The solenoid is cooled by forcing liquid helium at 4.5

K through tubes welded onto the casings of the coil windings. There are 1154 turns in

the solenoid and it operates with a current of 7.73 kA. This leads to a stored energy
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of 40 MJ. Because the solenoid creates an axial field pointed along the beam-line, a

charged particle moving transverse to the beam-line will be bend in the φ-plane. The

magnetic field lines return through the steel in calorimeters.

4.2.2 Muon Spectrometer Toroids

The ATLAS barrel toroid is composed of eight separate air-core toroid elements as

seen in Figure 4.3 [4,22]. These start radially at 9.4 m and end at 20.1 m. Axially, the

barrel toroid is 25.3 m long. The peak magnetic field provided by the barrel toroid is

3.9 T due to a 20.5 kA current in the coils. This yields a stored energy of 1080 MJ.

Figure 4.3: A photo of the barrel toroid installed in the ATLAS underground cavern.
The eight barrel toroid coils are visible; each is encased in a stainless-steel vacuum
structure. The entire assembly is held in place by eight inner and eight outer rings of
struts. The temporary scaffolding and green platforms were removed after installation
[4].
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Each of the two ATLAS end-cap toroids consists of eight coils [4]. They are housed

in an aluminum alloy casing. The inner diameter of the end-cap torroid is 1.65 m and

it extends up to 10.7 m. The operating current is 20.5 kA leading to a peak field of

4.1 T and a stored energy of 250 MJ in each end-cap torroid.

The expected magnetic field integral for the ATLAS toroid is used to evaluate

the bending power of the field. This field integral is shown in Figure 4.4. There is

good magnetic field coverage up to |η| < 2.6. The regions with low magnetic field,

1.4 < |η| < 1.6, correspond to the area where the fringe field from the barrel and

end-cap cancel the bending power of each other [4]. The measurement of the muon

momentum in this region tends to degrade.
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Figure 2.9: R- and z-dependence of the radial
(Br) and axial (Bz) magnetic field components
in the inner detector cavity, at fixed azimuth.
The symbols denote the measured axial and ra-
dial field components and the lines are the re-
sult of the fit described in section 2.2.4.

Figure 2.10: Predicted field integral as a func-
tion of |η | from the innermost to the outermost
MDT layer in one toroid octant, for infinite-
momentum muons. The curves correspond to
the azimuthal angles φ = 0 (red) and φ = π/8
(black).

A number of large magnetisable components, shown schematically in figure 2.11, distort
the Biot-Savart field at different levels. Although amenable to experimental spot-checks (sec-
tion 2.2.5), such perturbations can only be determined using field simulations.

The highly anisotropic structure of the tile calorimeter cannot be satisfactorily modelled us-
ing only a scalar permeability and an effective steel-packing factor: a formalism incorporating a
magnetic permeability tensor, as well as a more sophisticated treatment of magnetic discontinu-
ities at material boundaries, is called for. The problem is compounded by the superposition of the
solenoid and toroid fields in the partially-saturated flux-return girder and in the tile calorimeter it-
self. A novel approach to magnetic-field modelling in such structures has therefore been developed
and implemented in the B-field simulation package ATLM [29]. This package, which incorporates
a careful description of the toroid and solenoid conductors as well as a detailed mathematical model
of the tile calorimeter, is used both to compute the Biot-Savart field by numerical integration (as
described above), and to predict, by a finite-element method, the field distortions caused by the
tile calorimeter, the flux-return girder and the shielding disk in both the ID cavity and the muon
spectrometer. Altogether, these distortions affect the field integral in the muon spectrometer by up
to 4%, depending on |η | and φ ; in addition, they induce, at the level of the inner MDT layers, local
field distortions of up to |∆B| ∼ 0.2 T.

A few discrete magnetic structures, either inside the muon spectrometer or close to its outer
layers, induce additional, localised magnetic perturbations. Their impact has been evaluated using
the 3D finite-element magnetostatics package TOSCA [30]. The largest perturbations are caused
by the air pads, jacks and traction cylinders which allow the calorimeters, the shielding disks, and
the end-cap toroids to slide along the rails. These affect primarily the field distribution across
the innermost MDT chambers in the lowest barrel sectors (BIL and BIS in sectors 12 to 14, see
figures 2.11 and 6.1), and in addition impact the field integral at the level of up to 10% over small
islands in η −φ space.

– 31 –

Figure 4.4: The predicted field integral as a function of |η| from the innermost to
the outermost MDT layer in one toroid octant. The field assumes perfectly straight
tracks. The black curve shows the field integral at φ = π/8 and the red curve shows
the field integral at φ = 0.
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4.3 Inner Detector

The ATLAS inner detector consists of multiple sub-detectors which work together

to measure the momentum of charged particles [4, 23, 24]. Energy loss profiles and

the track curvature can be combined to determine the particle identity. The three

components of the ID are the Pixel layer, the Semiconductor Tracker (SCT), and the

Transition Radiation Tracker (TRT). Figure 4.5 shows the acceptance and layout of

the various ID components. A schematic of the ID layers is seen in Figure 4.6.

Figure 4.5: A schematic quarter-section view of the ATLAS inner detector. The
major inner detector components are labeled. Straight lines show the pseudorapidity
coverage of various detector components.
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Figure 4.6: A schematic of the ATLAS Inner Detector detector with sub-detector
components labeled. The red line represents the trajectory of a charged particle with
pT = 10 GeV and η = 0.3. This track is shown traversing the beryllium beam-pipe,
the three silicon pixel layers, the four cyllindrical double layers of the barrel SCT,
and approximately 36 axial straws in the TRT.

4.3.1 Pixel Detector

The first component of the ID is the pixel detector. The pixel detector is designed

to provide high-precision measurements of tracks close to the interaction point. The

pixel detector consists of three layers in the barrel and three disks on both the A and
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the C side. The layers are parallel to the beam-line while the disks are perpendicular.

This is to ensure that every particle with |η| < 2.5 will pass at least three pixel layers.

The majority of the pixels are 50 µm ×400 µm in size while 10% are slightly larger.

The pixels are made from 250 µm thick planar silicon. Groups of 47,232 pixels are

formed into sensor modules, each 64.4 mm by 24.4 mm [4]. The pixel modules are

tilted at an angle to provide overlaps so that tracks will pass through each pixel layer.

In total, there approximately 80.4 million readout channels in the pixel detector and

the readout time is less than 25 ns to avoid out of time pileup from the tracks resulting

from different bunch crossings. A three-dimensional schematic showing the layout of

the pixel detector is found in Figure 4.7 [3, 24].

Figure 4.7: A three-dimensional view of the Pixel detector from the ATLAS Inner
Detector.

4.3.2 Semiconductor Tracker Detector

The semiconductor tracker is designed to provide additional precision measure-

ments of the charged tracks [3,24]. To this end, the SCT consists of four barrel layers
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parallel to the beam-line and nine transverse rings. This geometry is to ensure that

every track with |η| < 2.5 should pass through at least 4 layers in the SCT as seen in

Figure 4.5. The SCT detectors themselves are silicon strip detectors using the classic

single-sided p-in-n technology with AC-coupled readout strips. The thickness of the

detectors is around 285 µm [4]. In the barrel they have a pitch of 80 µm and in the

disks the pitch ranges between 56.9 and 90.4 µm. To obtain a second coordinate each

SCT layer consists of two semiconductor planes. The strips are placed at a small 40

mrad angle rather than at an orthogonal orientation with respect to each other. This

leads to an intrinsic spatial resolution in the barrel of 17 µm in the rφ plane and a far

worse resolution of 580 µm in the z plane. For the disks, this is again 17 µm in the

rφ plane and 580 µm in the r-plane. In total, the SCT detector has 15,912 sensors.

Improving the resolution in the rφ plane at the expense of the z and r planes is done

because the magnetic field in the ID curves the tracks in the φ direction as discussed

in Section 4.2; thus to obtain a precise momentum measurement, it is necessary to

have precision measurements of the curvature in the rφ plane. As with the Pixel

detector, the SCT readout time is less than 25 ns to differentiate hits from different

bunch crossings.

4.3.3 Transition Radiation Tracker

Unlike the other detector systems in the ID, the transition radiation tracker is

not silicon based [3, 4, 24]. The TRT contributes significantly to the ID momentum

measurement because it provides a large number of measurements (typically 36 per

track) and a longer measured track length than the silicon detectors. Additionally,
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when relativistic charged particles pass through the boundary between materials with

different dielectric constants, they emit transition radiation. This radiation knocks

electrons free in the gas which then cascade producing an ionization proportional to

the energy loss. This dE/dx measurement allows for improved particle identification.

The gas in the drift-tubes is composed of a mixture of 70% Xenon, 27% CO2, and

3% O2 gas. At the center is a 31 µm diameter tungsten wire plated with 0.5-0.7 µm

of gold. The central wire is the anode and is kept at ground potential. Meanwhile

the walls of the tubes are used as the cathode. The walls are made of polymide film

layers that are bonded to each other. This material is chosen for its good electrical

and mechanical properties and to minimize the wall thickness. The cathodes are

operated at around −1530 V. Typically the time it takes for all the electrons to drift

to the anode readout is around 50 ns. The drift time can be converted to a drift

radius using a calibration function. Using these drift radii, reconstruction algorithms

can determine the most likely track passing through all tubes which were hit. As seen

in Figure 4.5, the TRT has three components: the barrel and two end-cap modules

(one for side A and one for side B). In total, the TRT system contains almost 300,000

straws and has good coverage for |η| < 2.0. The typical spatial resolution is ∼130

µm per straw.

4.4 Calorimetry

In ATLAS various calorimeters are used to measure the energy of electromagnetic

and hadronic showers. These can be categorized as electromagnetic and hadronic

calorimeters and each has a barrel and end-cap component [3, 4]. The electromag-
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netic calorimeter is located just outside the central solenoid. This calorimeter is made

of lead and liquid argon (LAr) and extends to |η| < 3.2. It is intended to measure

the energy of electromagnetic showers. Beyond it, there is the hadronic calorimeter.

In the barrel, the hadronic calorimeter uses iron as the absorbing medium to develop

the shower and polystyrene scintillating tiles as the active material to measure the

energy while in the end-caps a liquid argon technology is again used. Liquid argon

based forward calorimeters, which measure both electromagnetic and hadronic show-

ers, extend the calorimeter coverage to |η| < 4.9. Figure 4.8 shows a diagram of the

ATLAS calorimeter system.

Figure 4.8: A three-dimensional model of the ATLAS hadronic and electromagnetic
calorimeter.
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4.4.1 Electromagnetic Calorimeter

The ATLAS electromagnetic calorimeter causes electrons, positrons, and photons

to shower and then measures the energy contained in those showers [3, 4, 25]. Elec-

tromagnetic particles shower through two primary processes: pair-production and

bremsstrahlung. Pair-production occurs when a photon produces a positron and an

electron. Pair-production must occur before a photon can shower. Once there are

charged particles in the shower, bremsstrahlung can occur. Bremsstrahlung is when

a charged particle is deflected by the electric field of an atom and emits a photon.

These photons can then pair-produce and the cycle starts over.

The EM calorimeter is divided into two parts: the barrel region from |η| < 1.475

and the end-cap region 1.375 < |η| < 3.2. The detector itself uses liquid argon as the

active medium, Kapton electrodes, and lead absorber plates in an accordion shape

(see Figure 4.9). Because liquid argon is used as the active medium, the subsystem

is very radiation hard but the ability to withstand radiation comes at the price of

slow signal processing due to the long time it takes ionization to be read out in the

liquid argon medium. The dense materials in the EM calorimeter will help to contain

all but the most energetic electromagnetic showers. In the barrel, the calorimeter is

between 22 and 30 radiation lengths (X0) thick while in the end-cap it is between 24

and 33 X0 thick.

Figure 4.9 shows a schematic of the liquid argon EM calorimeter system which is

composed of three layers. The first layer is known as the pre-sampling layer. The

presampling layer is necessary because a substantial amount of material exists prior to

the EM calorimeter. This presampler uses highly-segmented layers (in η) to determine
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the shower shape and estimate the showering which occurred prior to entering the

calorimeter. The presampling layer is 4.3 radiation lengths thick and cells in the

presampling layer have an angular size of ∆φ × ∆η = 0.0031 × 0.098. The second

layer comprises the bulk of the EM calorimeter. It is around 16 radiation lengths

thick and the angular dimensions of the cells are ∆φ × ∆η = 0.0245 × 0.025. The

last layer of the calorimeter is used to identify EM-showers which punch-through into

the hadronic calorimeter. This layer ranges in thickness between 2 and 12 radiation

lengths and it has the most coarse angular cell size with ∆φ×∆η = 0.0245× 0.05.
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Figure 4.9: A schematic of the LAr barrel accordion geometry. Different layers are
delineated and the granularity of the cells in η and φ is shown. [4].

4.4.2 Hadronic Calorimeter

The hadronic tile calorimeter covers the barrel region of the ATLAS detector,

|η| < 1.7. The tile calorimeter is divided into two regions, the barrel and the extended

barrel. The barrel cylinder region provides coverage until |η| < 1.0. At this point,

there is a vertical space to provide room for services required by the ID and EM

calorimeter. The extended barrel provides coverage of the region 0.8 < |η| < 1.7.
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In both, steel is used as the absorber while polystyrene scintillating tiles are used as

the active material. Each of the tiles are 3 mm thick and they are surrounded by

steel. The ratio of steel to scintillator is 4.7 to 1 by volume. The scintillating tiles

are read out by wavelength shifting fibers into photomultiplier readouts. This layout

can be seen in Figure 4.10. The stopping power of the calorimeters is measured using

the “interaction length,” λ, which is defined as the mean distance required to reduce

the number of relativistic charged particles in a hadronic shower by a factor of 1/e.

The barrel tile calorimeter is segmented into three layers which are 1.5, 4.1, and 1.8

interaction lengths respectively. These start at an inner radius of 2.28 m and extend

to 4.25 m. The extended barrel is similarly segmented into three layers of 1.5, 2.6,

and 3.3 interaction lengths.

The hadronic end-cap calorimeter utilizes liquid-argon as the active medium. It

is comprised of two independent wheels, one in each end-cap. These are physically

located behind the end-cap EM calorimeter and the cooling cryostats are shared

between the two systems. The HEC is built so that it extends to |η| = 3.2 in order to

overlap with the forward calorimeter discussed in the next section. The wheels closest

to the interaction point are constructed from copper plates 25 mm in thickness. Those

further away are constructed from copper plates 50 mm in thickness. The inner radius

of these plates is 0.475 m while the outer radius is 2.03 m. The copper plates are

interspaced with gaps filled with liquid argon which comprises the active medium for

the calorimeter.
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Photomultiplier
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Scintillator Steel

Source

tubes

Figure 4.10: A schematic showing the integration of the mechanical assembly and
the optical readout of the scintillator in the tile calorimeter. Each tile has holes, 9
mm in diameter, intended for stainless-steel tubes that house the radioactive source
calibration system [4,5].

4.4.3 Forward Calorimeter

The last component of the calorimeter is the forward calorimeter (FCal) [4]. This

region has particular challenges because the forward region is exposed to very high

levels of radiation. The forward calorimeter uses liquid argon as the active material

and is separated into three regions. The first one is made from copper and liquid argon

and is dedicated to EM calorimetery while the next two are made from tungsten and

liquid argon and are more specialized for hadronic calorimetry. In total, the forward

calorimeter is 10 interaction lengths deep. The layout of these calorimeters can be

seen in Figure 4.11.

In each of these sections, the calorimeter is composed of a metal matrix with
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Figure 4.11: A schematic diagram showing the three FCAL models and the EM and
Hadronic end-cap calorimeters. The material in front of the FCAL and the shielding
behind it are also visible. Black regions are structural parts of the cryostat.

regularly spaced channels with concentric rods and tubes. The tubes function as the

ground while the rods themselves are held at high voltage. The liquid argon in the gap

between the rods and tubes is the active material. Figure 4.12 shows the structure

of the rods and tubes in the first layer of the forward calorimeter that is dedicated

to EM calorimetry [3,25]. The Molière radius represents the characteristic transverse

size of an EM shower. It is defined to be the cylindrical radius within which 90% of

the shower energy is deposited. In Figure 4.12, the Molière radius is represented by

the pink circle for reference.
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Figure 4.12: Schematic showing the electrode structure of the FCAL1 with the matrix
of copper plates, copper tubes, and rods. The gap is filled with the active medium,
LAr.

4.5 Muon Spectrometer

Because muons tend to pass through the detector without stopping, the only way

to measure the muon momentum is by measuring the curvature of the muon track

in a magnetic field [3, 4, 26]. As the strength of the magnetic field increases, the

curvature of the track will increase thereby improving the momentum measurement.

Of course, it is important that the actual trajectory be well measured. To measure

the trajectory of muons, ATLAS uses precision chambers: gas-filled muon drift-tubes

(MDTs) and cathode strip chambers (CSCs). Because MDTs have a very slow readout

time compared to the bunch crossing rate, a faster triggering system is necessary to

specify which, if any, drift-tubes should be read-out for a given bunch crossing. This
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triggering system is comprised of faster gas-filled chambers known as the resistive

plate chambers (RPCs) and the thin gap chambers (TGCs). As seen in Figure 4.13

there are layers of MDTs sandwiched by RPC or TGC triggering layers. In the barrel,

these MDT layers are parallel with the beam-line. In the end-cap, the MDT layers

are perpendicular to the beam. In the very forward region, MDTs are replaced by the

CSCs. Within the barrel, the RPCs are used as the triggering elements and they are

placed around the MDT chambers so that muons will pass through three RPC layers.

In the end-cap, the TGCs are used as the triggering layers and they are positioned

so that most muons will pass through three TGC layers.

Figure 4.13: A cross-section view of the ATLAS muon spectrometer in a plane con-
taining the beam axis (bending plane). Muons of infinite momentum would propagate
unbent by the magnetic fields in straight trajectories illustrated by the dashed lines.
Typically these muon tracks will traverse three muon stations [4].
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4.5.1 Muon Drift Tubes

The MDT tubes, shown in Figure 4.14, are 29.970 mm diameter aluminum tubes

with a 50 µm diameter central Tungsten-Rhenium wire. This wire is held at an

operating potential of 3080 V. The gas in the tube is a mixture with 93% Argon and

7% CO2. When a charged particle passes through, it ionizes the gas. The displaced

electrons then drift toward the central wire (the anode) producing a signal. The

measurement of the drift time makes it possible to measure how far away from the

wire the ionizing particle passed. In the case of the MDTs, the maximum drift time

is ∼ 700 ns.

µ

29.970 mm

Anode wire

Cathode tube

Rmin

Figure 4.14: A cross-section view of a MDT tube. The anode wire is held at 3080 V
while cathode tube is held at ground. In the figure, a muon is shown passing through
the tube. The black dots represent the displaced electrons which then drift to the
anode wire [4].

The physical layout of the MDT chambers can be seen in Figure 4.15. A single

MDT chamber is typically between 1 and 6 meters in length and 1 to 2 meters

in width. Each chamber has two multi-layers, each of which is three or four tube

layers deep. These are joined together using an epoxy glue. The two multi-layers are
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separated by three mechanical spacers. This structure is shown in Figure 4.15. In the

figure, the HV side represents where the high voltage is supplied while the RO side

is where the drift tubes are read out.

Figure 4.15: A diagram showing the physical structure of an MDT chamber. The
three spacer bars (labeled RO, MI, and HV) are connected by longitudinal beams.
RO designates the location of the signal readout and HV designates the location of
the high voltage supply. The red lines show the optical alignment rays which are used
to monitor the internal geometry of the chamber [4].

In total, the ATLAS muon system has 370,000 MDT tubes which are grouped

into 1194 chambers. This covers a total area of 5500 m2 [3, 26].

4.5.2 Cathode Strip Chambers

The CSCs are the MDT counterpart for the very forward region of the muon

spectrometer (2 < |η| < 2.7) [3,4,26]. Unlike the drift tubes in the MDTs, the CSCs

are multiwire proportional chambers that use a cathode strip to readout signals. A
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schematic showing this layout is found in Figure 4.16. The cathodes are segmented

strips. One set of strips are perpendicular to the anode wires providing the precision

coordinate while the other set runs parallel to the wires and provides the transverse

coordinate.

Anode wires

Cathode strips
S W

S=d=2.5 mm

d

Figure 4.16: A schematic of the CSC detector showing the anode wires and the
cathode readout strips. This view shows the structure of the CSC cells when looking
down the wires. The wire pitch s is equal to the spacing between the anode and
cathodes, d [4].

The distance between the anode wires is 2.5 mm and the distance between the

anode and cathode is also 2.5 mm. The wires themselves are gold plated tungsten

with a small component of rhenium 30 µm in diameter. The gap between two cathode

strips is 0.25 and the strip widths are 1.519 mm and 1.602 mm for the large and small

chambers respectively. One out of every three strips is connected to the readout

electronics which measure the charge induced on the strips. The gas used in the

CSCs is a mixture of 80% Ar and 20% CO2. The anode wire is held at an operating

voltage of 1900 V. The gas gain from this configuration is 6 × 104 and the typical

ionization from a normal track is 90 ion pairs. The resulting drift time is generally

40 ns or less which gives a timing resolution of about 7 ns per plane. This small drift

time is critical in the forward region because of the high particle flux and background

conditions in these areas. As the CSCs are limited to the forward regions of the
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ATLAS muon spectrometer, there are only 32 CSC chambers and 30,720 readout

channels.

4.5.3 Resistive Plate Chambers

The RPCs are a gaseous detectors which function as the trigger for the barrel of

the muon subsystem. Their coverage extends to |η| = 1.05 and there are 606 RPC

chambers in total. As shown in Figure 4.17, two of the RPC chambers are located

on the top and bottom of the middle MDT layer. The third RPC chamber is located

below the outer MDT layer. Individually, the RPC chambers are comprised of two

independent detector layers, known as gas volumes. Each gas volume is composed of

two parallel resistive plates made from plastic laminate with a 2 mm gas-filled gap

in between. The plates themselves are 2 mm thick and coated with a thin graphite

layer. The distance between the gap is maintained by a series of insulating spacers.

The gas used in the RPCs is 94.7% C2H2F4, 5% Iso-C4H10, and 0.3% SF6. Unlike

the drift tubes, the RPCs operate in avalanche mode using a high operating voltage

of 9.8 kV. On either side of the resistive plates are metal pick-up strips with a width

of 25 to 35 mm. These are insulated from the graphite electrodes by means of thin

Polyethylene Terephthalate films that are glued to the graphite surface. The strips

on the top and bottom of the gas volumes are orthogonal to each other making it

possible to measure the η and φ coordinates. In Figure 4.18, a cross-sectional view

of the RPCs is shown. Two units are joined to form a chamber, each of these units

is comprised of two gas volumes supported by spacers. Paper honeycomb reinforces

the gas volumes.

50



Chapter 4: The ATLAS Detector

Operating in avalanche mode, the RPCs have very good time resolution producing

signals with a time jitter less than 10 ns after including the strip propagation time.

2008 JINST 3 S08003

Figure 6.28: Cross-section through the upper part of the barrel with the RPC’s marked in colour.
In the middle chamber layer, RPC1 and RPC2 are below and above their respective MDT partner.
In the outer layer, the RPC3 is above the MDT in the large and below the MDT in the small sectors.
All dimensions are in mm.

independent detector layers, each measuring η and φ . A track going through all three stations thus
delivers six measurements in η and φ . This redundancy in the track measurement allows the use
of a 3-out-of-4 coincidence in both projections for the low-pT trigger (RPC1 and RPC2 stations)
and a 1-out-of-2 OR for the high-pT trigger (RPC3 station). This coincidence scheme rejects fake
tracks from noise hits and greatly improves the trigger efficiency in the presence of small chamber
inefficiencies.

The naming scheme of the RPC’s is identical to the one in the MDT’s, a RPC in a small sector
of the middle layer thus being called a BMS. To denote a RPC/MDT pair in the outer layer the term
station is used, while for the RPC/MDT/RPC packages in the middle layer the term superstations
is used.

6.7.1 Principle of operation

The RPC is a gaseous parallel electrode-plate (i.e. no wire) detector. Two resistive plates, made
of phenolic-melaminic plastic laminate, are kept parallel to each other at a distance of 2 mm by
insulating spacers. The electric field between the plates of about 4.9 kV/mm allows avalanches to
form along the ionising tracks towards the anode. The signal is read out via capacitive coupling
to metallic strips, which are mounted on the outer faces of the resistive plates. The gas used is a
mixture of C2H2F4/Iso-C4H10/SF6 (94.7/5/0.3) which combines relatively low operating voltage

– 194 –

Figure 4.17: Cross-sectional view showing the position of the RPC chambers around
the MDT chambers. There are two RPC layers around the middle MDT chambers
and on RPC chamber below the outer MDT chambers.
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Figure 4.18: Cross-sectional view of an RPC chamber. Visible are two units that have
been joined to form a chamber. Each unit has two gas-volumes supported by spacers
(shown in green). The readout strips, colored dark pink, are shown: the longitudinal
strips are on top of the gas volume and the transverse trips are on the bottom.

4.5.4 Thin Gap Chambers

Like the RPCs, the thin gap chambers provide the triggering elements in the

end-cap region of the muon spectrometer and an additional azimuthal coordinate

to complement the MDT measurement in the bending plane. Physically, the TGCs

are a type of multi-wire proportional chamber [3, 4, 26]. The fundamental difference

between the TGC and a typical multi-wire proportional chamber is that the distance

between the high voltage anode wires, 1.8 mm, is larger than the distance between

the cathode and the anode itself, 1.4 mm. The readout strips are located at the top

of the device and are orthogonal to the anode wires. The anode wires are 50 µm in

diameter and held at a voltage of ∼ 2900 V. A schematic showing this layout is found
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in Figure 4.19.

1.8 mm

1.4 mm

1.6 mm G-10

50 µm wire

Pick-up strip

+HV

Graphite layer

Figure 4.19: A schematic of the TGC structure showing the anode wires and graphite
cathodes. The readout strips are orthogonal to the anode wires.

The TGCs are operated with a highly quenching gas mixture comprised of 55%

CO2 and 45% n-pentane. The time resolution is 99% efficient at determining a 25 ns

bunch crossing window.

4.6 ATLAS Expected Performance

The expected resolution for the various detector components and their coverage

is detailed in Table 4.6. For high-pT muons, the muon-spectrometer performance is

independent of the innder-detector. These values are important because they provide

a basis for understanding the lepton detector response functions that will be used to

measure the mass and width of the Higgs boson.

The angular performance of tracking in the ATLAS detector is extremely good [4].

The typical azimuthal (φ) angular resolution is around 100 µrad while the polar an-

gular resolution on cot(θ) is about 1×10−3. These resolutions have a negligible effect

on the invariant mass of the Z, typically less than one part in a million. This makes
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Table 4.1: General performance design specifications of the ATLAS detector. [4].

Detector Subsystem Required Resolution η coverage
Measurement Trigger

Inner Detector σpT/pT = 0.05%pT ⊕ 1% |η| < 2.5

EM Calorimeter σE/E = 10%/
√
E ⊕ 0.7% |η| < 3.2 |η| < 2.5

HCAL (Barrel and End-cap) σE/E = 50%/
√
E ⊕ 3% |η| < 3.2 |η| < 3.2

HCAL (Forward) σE = 100%/
√
E ⊕ 10% 3.1 < |η| < 4.9 3.1 < |η| < 4.9

Muon Spectrometer σpT = 10% at pT = 1 TeV |η| < 2.7 |η| < 2.4

it much easier to parameterize the detector response because the three-dimensional

response in momentum, η, and φ can be reduced to a one-dimensional response in

momentum. For muons this one-dimensional momentum response will be affected by

the performance of the ID and MS.

4.7 ATLAS Data and Run Periods

The operational period during which data was collected by the ATLAS detector

lasted for four years: 2009, 2010, 2011, and 2012. Figure 4.20 shows, in green, the

total integrated luminosity delivered by the LHC machine to the ATLAS detector as

a function of time in the 2011 and 2012 run periods. In yellow is the total integrated

luminosity collected by the ATLAS detector. The data collected by ATLAS is further

subdivided into a unit called the “run period.” These run periods are blocks of time

during which the detector and beam conditions are similar. If the beam conditions

change dramatically, a new run will typically be started. In general, the run period

lasts anywhere from a few weeks to a month or more. Within each “run period” is the

individual “run.” A run is a specific block of time during which the ATLAS detector
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is continuously collecting data. If the beam is lost, the run will be stopped and the

detector data acquisition is put on standby. The LHC is able to produce continuous

collisions for a few hours. Thus, the typical length of a run is a few hours. Runs

cannot be indefinite because the luminosity of the beam gradually decreases and it

becomes advantageous to inject a new beam with the maximum luminosity.
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Figure 4.20: Cumulative luminosity versus time delivered to ATLAS (green) and
recorded by ATLAS (yellow) during stable beams for p-p collisions at 7 and 8 TeV
centre-of-mass energy in 2011 and 2012.

Within each run is a further subdivision called the “lumi-block.” The lumi-block is

an invented subdivision that corresponds to one or two minutes of data collection time.

Figure 4.21 shows an example of the instantaneous luminosity profile for an ATLAS

run. The “LHC Delivered All” luminosity refers to the LHC collisions produced at

ATLAS interaction point in a given lumi-block regardless of whether the collisions

occurred while the beams were properly focused and collimated while “LHC Delivered

Stable” refers to the collisions provided by the LHC in which the beams were stable.

“ATLAS Ready Recorded” refers to the collisions recorded by the ATLAS detector.
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From the figure, it is clear that the instantaneous luminosity gradually decreases

with time. This decrease is because the beam gradually dissipates as proton-proton

collisions and beam-line interactions remove protons from the beam.

Figure 4.21: The instantaneous delivered (in yellow) and ATLAS recorded (in dark
grey) luminosity for an example run.

4.7.1 ATLAS Data Quality

There is an additional down time durring which the ATLAS detector is recording

data, but the data is questionable or faulty for some reason. This could be for a

multitude of reasons. Oftentimes, a noise burst in the calorimeter will cause the data

for a few lumi-blocks to be flawed or an electronic malfunction in the ATLAS end-cap

trigger system could cause a few minutes of downtime while the trigger is recovered.
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Figure 4.22: Cumulative luminosity versus time delivered to ATLAS (green), recorded
by ATLAS (yellow), and certified to be good quality data (blue) during stable beams
for p-p collisions at 7 and 8 TeV centre-of-mass energy in 2011 and 2012.

These lumi-blocks are flagged by a combination of automatic algorithms and data

quality analyzers who check through the runs looking for problems that could have

occurred during the data taking. This is a monumental task, but the final result is a

data quality database which lists “defects” that are present in various runs and where

they occur. When an analysis is selecting data, it need only specify which defects

are intolerable for it and it is possible to produce a data set which does not include

the lumi-blocks in which these defects are present. In 2012, this 95.5% of recorded

ATLAS data could be used for analysis. This efficiency can be seen by comparing the

blue and yellow histograms in Figure 4.22.
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4.8 ATLAS Triggering

During 2011 and 2012, the LHC operated with a 20 MHz rate of p-p collisions.

To reduce this to a manageable rate, triggering algorithms are used. This trigger has

multiple levels. At Level 1 (L1), the trigger is extremely fast and relies on hardware

and hit coincidence to determine what is called a region of interest (ROI). This ROI

is a physical part of the detector which has a signal consistent with a certain particle

and it is used as an input to the higher level triggers. The L1 trigger gives a crude

estimate of the momentum/energy using hardware coincidences. For example, if two

or three layers of the muon spectrometer have hits in the resistive plate chambers

(RPCs), these hits will pass through a fast hardware algorithm that determines, in

a coarse way, the curvature of these hits. If the momentum is above the threshold

required by the L1 trigger, information is read out of the detector and it passes to the

higher Level 2 (L2) trigger. The L2 trigger reduces the rate from 75 kHz to 3.5 kHz.

The last stage of the trigger is called the Event Filter. The Event Filter performs

the full reconstruction algorithms and the hard reconstruction level pT and energy

cuts are applied. The Event Filter further reduces the data collection rate from 75

kHz to 200 Hz. The fully triggered events, also known as raw data, are stored on

tape drives that can be accessed to produce Event Data Summary (ESD) files and

Analysis Object Data (AOD) files which can then be used for analyses.
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Muon Performance

As discussed in Chapter 4, the ATLAS detector is composed of many different

detector subsystems which work together to measure the energy and momentum of

particles that pass through. Muon reconstruction utilizes tracking information from

the muon spectrometer and inner detector to fully reconstruct the trajectory of muons.

For the Higgs analysis, the understanding of the muon performance in ATLAS data

and simulated data is essential to properly estimate the event yield and to derive

muon detector response functions.

The muon performance measurements fall into one of three categories: efficiency,

scale, and resolution. Scale and resolution are related to how the momentum of

the particle is measured by the detector while efficiency relates to the rate at which

particles are reconstructed or identified using a given algorithm.

The muon reconstruction efficiency is the probability that a muon will pass the

requirements from the identification and reconstruction algorithms. If an algorithm

identifies every track as a muon it will have a 100% efficiency but this will come at
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the expense of another quantity known as the “fake rate.” “Fake rate” refers to the

percentage of reconstructed muons that are not actual muons. Due to the tradeoff

between “efficiency” and “fake rate,” different “operating points” are typically speci-

fied for reconstruction algorithms which optimize these two quantities for the specific

needs of various analyses. These operating points will give a better efficiency at the

expense of the fake rate or vice versa.

The efficiency scale factor, defined in Equation 5.1, is used to weight events so

that the efficiency in data and simulated events will match.

SFε =
εdata
εMC

(5.1)

For example, if the efficiency as measured in data were 80% and the efficiency in MC

were 90%, a comparison of data events to MC events would show more MC events

than there should be. By weighting the MC events with the scale-factor, the data and

MC can be brought into agreement. This weighting can be multiplicatively combined

for different muons in an event to give the weight for the entire event. Thus for

a 4-muon event, the muon efficiency weight would be wε =
∏4

i=1 SFε,i. Additional

weightings such as the luminosity weighting would also need to be applied to compare

data and MC. Understanding the efficiency is important for the Higgs analysis because

the efficiency with which muons are reconstructed will directly affect the measured

normalization of both signal and background. If this measured normalization differs

from the expected normalization, it can indicate that the Higgs production cross

section differs from the one predicted by the Standard Model.

A muon momentum scale correction refers to the systematic shift in the measured

momentum relative to the truth momentum of a muon. If, for example, every muon

60



Chapter 5: Muon Performance

was measured by ATLAS to have 2 GeV more momentum than it actually had, a

flat 2 GeV scale correction should be applied to correct the data. A scale correction

need not be flat, however, and it can depend on many different quantities including

the region of the detector the muon passed through or the momentum of the muon

itself. If the muon momentum scale is wrong, this will affect the Higgs mass thereby

resulting in a systematic shift in the measured Higgs mass.

The resolution of the muon momentum describes the spread in measurements

which can be expected if identical muons pass through the detector. Like the scale,

the resolution can depend on which region of the detector the muon has passed

through and on the momentum of the muon. It is not possible, without adding addi-

tional information, to reduce the resolution of a measurement. The goal of resolution

corrections is simply to ensure that simulation and data have the same resolution.

Simulated muons in Monte Carlo are produced with better resolution than is ex-

pected in data. The simulated muon resolution can then be corrected to match the

data by adding a randomly distributed number to the momentum of the Monte Carlo

muon momentum. In the ensemble of muon momenta, this smearing has the effect

of degrading the muon resolution. The amount of smearing can be tuned so that the

resolution of muons in Monte Carlo will match the resolution of muons in data. For

the Higgs analysis, the smearing of the muon momentum will translate into a smear-

ing of the width of the four-lepton invariant mass. Accordingly, if the resolution is

not properly corrected in Monte Carlo, the Higgs width measurement will be biased.
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5.1 Low pT Muon Reconstruction Efficiency

Many ATLAS analyses rely on a proper understanding of muons. Because the

H → ZZ(∗) → 4` involves a low-mass off-shell Z-boson which decays to muons, it is

vitally important to understand the behavior of low-pT muons and their reconstruc-

tion rate in the ATLAS detector. As mentioned in the introduction, this thesis is

reliant on a precise understanding of the muon reconstruction efficiency to properly

measure the Higgs cross section.

The goal of this particular measurement is to determine the ATLAS muon re-

construction efficiency at low pT and the data over Monte Carlo scale factors. The

probability to reconstruct a muon will, in general, depend on the kinematic properties

of the muon and its trajectory in the detector. The ATLAS muon spectrometer is

not hermetic nor is its coverage uniform. Because of this, the efficiency will depend

on both the pseudorapidity, η, and the φ-coordinate of the muon’s track. Muons of

different charge deflect in the ATLAS magnetic field in opposite directions thereby

causing the reconstruction efficiency to exhibit a charge dependence. To account for

these kinematic and detector effects, efficiencies and scale factors will be calculated

for different pT, η, and q × η regions. The effect of the running conditions on the

efficiencies was examined by looking for run period or pileup1 dependence.

To measure the muon reconstruction efficiency at low pT, tag and probe was

performed using the J/ψ resonance. To select J/ψ candidates, events were required

to have one fully reconstructed muon, known as the tag, and one track, the probe,

which forms an invariant mass with the tag consistent with the mass of a J/ψ. The

1In this study, pileup is measured by the number of primary vertices in the event.
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fully reconstructed tag aids in minimizing track-track backgrounds and increases the

probability that the event comes from the J/ψ resonance. Despite this, many di-

muon continuum and track combinatoric background events will still pass the tag-

probe selection requirements. To remove the backgrounds, the invariant mass of the

candidate tag-probe pairs is fitted with a polynomial background plus a Gaussian

signal. The efficiency is then calculated by dividing the number of events in the

signal Gaussian for reconstructed tag-probe pairs by the total number of events in

the signal Gaussian for all tag-probe pairs.

This study was performed using the 2011 data set from p-p collisions at 7 TeV.

The details of the measurement and the infrastructure are based on the 2010 mea-

surement done using an integrated luminosity of 42 pb−1 detailed in [27] and [28].

Concurrently, a study on higher pT muons was done using a Z → µµ sample. The

Z → µµ measurement is detailed in [29], [30] and was updated for the full 2011

dataset encompassing an integrated luminosity of 5.23 fb−1.

5.1.1 Data and Monte Carlo Samples

Data Samples

The measurement uses data from 2011 after applying a tight good run list (GRL)

which requires good detector operating conditions. After applying the GRL, the

integrated luminosity is 4.43 fb−1. The trigger used for the analysis is the highly

prescaled2 EF mu6 Trk Jspi loose. Applying the prescales, the luminosity used for

2Prescaled means that only a fraction of actual triggered events are recorded. The prescale is the
fraction of triggered events that are recorded to disk.
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the baseline measurement drops to 167.73 pb−1. EF mu6 Trk Jspi loose works at Lev-

els 1 and 2, by requiring a 6 GeV muon. At the Event Filter (EF) level, a track with

pT > 3.5 GeV is selected and required to form an invariant mass with the triggered

muon in the range 2600 MeV - 3600 MeV. The prescale for EF mu6 Trk Jspi loose is

variable and changes both within run periods and within individual runs.

Monte Carlo Samples

For calculating scale factors, Monte Carlo samples are used as shown in Table

5.1. Each of the samples was generated using Pythia [31]. The events were then

put through the ATLAS detector and hits were simulated using GEANT4 [32, 33].

Pileup interactions in both the same and nearby bunch crossings are included in the

simulation. The pileup and detector conditions were not constant throughout 2011.

To simulate this, the Monte Carlo events were produced for four representative “run

periods.”

Table 5.1: Direct and Indirect J/ψ Monte Carlo samples used in the analysis.

Description Size (events)

Direct J/ψ Production pT > 2.5 GeV 1M
Direct J/ψ Production pT > 4 GeV 5M
Indirect J/ψ Production pT > 2.5 GeV 2M
Indirect J/ψ Production pT > 4 GeV 5M

5.1.2 Muon Types

To reconstruct muons in the ATLAS detector, complex algorithms are used which

incorporate information from many components of the detector. These algorithms can
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be tuned to have a higher efficiency or higher fake rejection. The two reconstruction

chains used by ATLAS to reconstruct muons are Chain 1, STACO [34] and Chain 2,

MUID [35]. The primary muon types used for different analyses are the following:

Combined (CB) Muons are the statistical combination of an inner detector track

with a track in the muon spectrometer.

Segment Tagged (ST) Muons are an inner detector track which points to seg-

ments in the muon spectrometer. Unlike the combined muons, there is no fully

reconstructed track in the muon spectrometer for a segment tagged muon.

Standalone (SA) Muons are those which have no track in the inner detector but

a fully reconstructed track in the muon spectrometer. These are particularly

useful for high-pseudorapidity (> 2.5) regions where the inner detector does not

have coverage.

Calorimeter Tagged (CT) Muons are muons with an inner detector track which

points to the calorimeter. If the energy deposit in the calorimeter is found to

be consistent with the energy deposition from a muon, the track is said to be

calorimeter tagged. These types of muons are particularly useful for the central

region of the detector where there is a hole in the muon spectrometer for ID

and calorimeter cabling and services.

The J/ψ → µ+µ− efficiency study provides the muon reconstruction efficiency

and scale factors for CB and ST muons and each of the muon reconstruction chains,

STACO and MUID. Calo-tagged muons are also used by the analysis. The specific

calo-tagging algorithm used in the J/ψ → µ+µ− efficiency study works by preselecting
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ID tracks which satisfy a loose track isolation3 requirement of log (
∑

0.45 p
iso
T /pT) ≤

0.9. Next, a calorimetric isolation is put in place. This is done by extrapolating

tracks with pT > 4 GeV into the calorimeter and summing up their corrected energy

deposition. The η dependent values for this calorimetric cut are found in Table 5.2. If

the energy isolation requirements are not satisfied then a likelihood-ratio (LHR) dis-

criminant is used to determine whether the energy loss around the track is consistent

with the energy deposition of a muon (minimum ionizing particle).

Table 5.2: Calo-Tagging isolation requirements. The track isolation cuts are used in
preselection while the energy isolation is applied in post-selection.

Track |η| range Cuts

Track Isolation |η| ≤ 2.5 log
(∑

0.45 p
iso
T /pT

)
≤ 0.9

|η| ≤ 2.5 LHR > 0.5

Energy Isolation |η| ≤ 1.5 Eiso,0.4T /pT ≤ 3 AND Eiso,0.4T ≤ 17 GeV

1.5 < |η| ≤ 1.8 Eiso,0.4T /pT ≤ 1.4 AND Eiso,0.4T ≤ 10 GeV

1.8 < |η| ≤ 2.5 Eiso,0.4T /pT ≤ 1.6 AND Eiso,0.4T ≤ 13 GeV

5.1.3 Method

Tag and Probe Selection

The ATLAS muon reconstruction efficiency is measured by selecting events with a

fully reconstructed muon tag, and a probe which does not rely on data from the muon

spectrometer. The tag and the probe must form an invariant mass consistent with

the mass of the J/ψ. In this analysis, a tag muon is defined to satisfy the following

requirements:

3The expression
∑

0.45 pT refers to the summation of track momentum in a ∆R half-width cone
of 0.45 around the track to be calo-tagged.
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• Each tag muon must be a combined (CB) muon associated to a good quality,

as defined below, Inner Detector (ID) track.

• The tag muon is required to match a muon triggered by EF mu6 Trk Jpsi loose.

This is done by extrapolating the tag muon’s ID track into the muon spectrom-

eter and matching the η-φ region of interest (ROI) to which the extrapolation

corresponds to the ROI fired by the triggered muon.

• Tag muon pT > 6 GeV and |η| < 2.5.

• The distance of closest approach to the primary vertex in the longitudinal plane

and transverse plane are required to be |z0| < 1.5 mm and |d0| < 0.3 mm

respectively.

• The z0 and d0 significance are required to be less than 3.

In an event where a tag muon is selected, each track is considered as a probe if it

satisfies the following:

• p > 3 GeV, |η| < 2.5 and a good quality track.

• χ2 divided by the number of degrees of freedom of the fit to a common vertex

(between tag and probe) must be smaller than 6.

• ∆R =
√

(∆φ)2 + (∆η)2 < 3.5 where ∆R is the distance between the tag and

probe.

• Probe pT > 4 GeV to avoid selecting tracks that could not fire the EF mu6 Trk Jpsi

trigger.
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• The probe is calo-tagged.

When multiple probes are associated with a certain tag, only the probe with the

minimum χ2/ ndof fit to a common vertex with the tag is considered. As mentioned

above both tag and probes must correspond to a “good quality” track. These good

quality tracks are inner detector tracks which satisfy a number of quality cuts:

• Number of pixel hits greater than 1.

• Number of SCT hits greater than 6.

• For |η| < 1.9, the number of probe TRT hits must be greater than 5 of which

no more than 90% can be outliers. .

• For |η| ≥ 1.9 if the number of probe TRT hits is greater than 5, no more than

90% can be outliers.

To avoid situations where there is ambiguity as to whether the tag or probe muon

fired the LV1 trigger, a set of cuts are applied which prevent the tag and the probe

from occurring in the same region of interest. These cuts take into account the size

(in η and φ) of an ROI and the pT-dependent bending. The cuts are as follows:

• For probe pT ≤ 8 GeV, |ηtag − ηprobe| > 0.4 and |φtag − φprobe| > 0.5.

• For probe pT > 8 GeV and probe pT ≤ 10 GeV, |ηtag − ηprobe| > 0.3 and

|φtag − φprobe| > 0.35.

• For probe pT > 10 GeV, |ηtag − ηprobe| > 0.2 and |φtag − φprobe| > 0.25.
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Efficiency Measurement

To calculate the ATLAS muon reconstruction efficiency, the tag and probe pairs

are divided into two separate populations: one where the probe is matched to a

reconstructed muon (matched) and one where it is explicitly not reconstructed (un-

matched). Figure 5.1 shows a sample invariant mass distribution for the matched

and unmatched populations: The reconstruction efficiency is calculated by dividing
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Figure 5.1: Invariant mass of the matched and unmatched tag-probe pairs. CB
muons appear as filled circles, CB+ST probes appear as open circles. All probes in
the diagram are for Chain 2 muons from the probe kinematic region 0.1 < |η| < 1.1
and 3 GeV < pT < 4 GeV.

the number of reconstructed signal events by the total number of signal events. The

number of signal and background tag-probe pairs comes from a simultaneous fitting

of the matched and unmatched invariant mass distributions. The fitting process uses

the following functions for the matched and unmatched tag-probe pairs.

Matched fM (m) = NtotεS (m,µmatched, σmatched) +Bmatched (m);

Unmatched fM (m) = Ntot (1− ε)S (m,µunmatched, σunmatched) +Bunmatched (m).
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Here, Ntot represents the total signal normalization (e.g., tag and probe pairs coming

from a J/ψ) and ε is the efficiency. S (m,µmatched, σmatched) is the Gaussian signal func-

tion for matched tag-probe pairs. Bmatched (m) is the polynomial (quadratic) back-

ground function for the matched tag-probe pairs. Correspondingly, S (m,µunmatched, σunmatched)

is the Gaussian signal function for the unmatched tag-probe pairs and Bunmatched (m)

is the background function for the unmatched tag-probe pairs. In the fit, there are

twelve free parameters.

• Efficiency (ε)

• Total number of signal tag-probe pairs (Ntotal)

• Matched/unmatched signal width (σmatched/σunmatched)

• Matched/unmatched signal mass (mmatched/munmatched)

• Matched number of background tag-probe pairs

• Matched background slope

• Matched background quadratic term

• Unmatched number of background tag-probe pairs

• Unmatched background slope

• Unmatched background quadratic term

The parameters and their associated errors are determined using a Minuit χ2 fit,

however, when one or more bins contain zero entries, a log-likelihood fit is used
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instead. The uncertainty on the efficiency parameter, ε, is quoted as the statistical

uncertainty. The invariant mass window is centered near the J/ψ peak at 3100 MeV

and has a width of 950 MeV. This choice is made because the EF mu6 Trk Jpsi loose

requires the triggered muon and track to have an invariant mass within (2600, 3600)

MeV.

5.1.4 Systematic Uncertainties and Checks

Systematic Uncertainties

Systematic uncertainties arising from the signal and background shapes have been

added to the statistical errors. The three systematic uncertainties used in this analysis

are:

1. Signal Shape: The mean and width of the Gaussian, instead of varying freely,

are fixed between the matched and unmatched.

2. Background Shape: A linear background is used in the fit, instead of the

quadratic baseline.

3. Alternative Fit: Instead of simultaneously fitting the matched and unmatched

tag-probe pair populations, the efficiency is calculated by fitting the matched

and total tag-probe pairs.

The systematic uncertainties are calculated by finding the maximal positive and neg-

ative deviation from the baseline of these three alternative methods and then adding

these maximal positive and negative variations in quadrature to the statistical un-
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certainty. For the linear background models, a reduced fitting window (600 MeV) is

used for |η| < 1.7.

Systematic Checks

In addition to the signal and background shape and fitting methods, other sys-

tematic checks have been performed to ensure the consistency of the measurement.

These include:

1. Probe Selection: A cross-check using Inner Detector (ID) tracks as probes is

used to verify the baseline calo-tagged probe measurement (see Figure 5.2 and

Figure 5.3).

2. Pileup: To determine if there is an effect on the efficiency from pile-up, the

efficiency was measured for different number of interaction vertices per event,

nvtx (see Figure 5.4).

3. Run Period Dependence: To determine if the efficiency changes with the

different conditions present in separate data-taking run periods, a binning with

respect to run period was made (see Figure 5.5).

As seen in Figure 5.2 and Figure 5.3, there is good agreement (within errors) between

the efficiency as calculated using ID and CT probes. One noticeable feature is that

systematic errors tend to be higher for the ID probe based measurement. This is due

to having a higher background with more structure than the calo-tagged background

which is primarily linear. This non-linear background leads to increased systematics

as the different fitting methods give slightly different results.
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Figure 5.2: Efficiency versus η for STACO CB and CB+ST muons. Circles are for
CB muons, triangles are for CB+ST muons. Black open points are for ID-probes
while red and blue filled points are for CT-probes. The error bars correspond to the
statistical uncertainty and the error bands represent the total (statistical+systematic)
uncertainty.
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Figure 5.3: Efficiency versus η for STACO CB and CB+ST muons. Circles are for
CB muons, triangles are for CB+ST muons. Black open points are for ID-probes
while red and blue filled points are for CT-probes. The error bars correspond to the
statistical uncertainty and the error bands represent the total (statistical+systematic)
uncertainty.
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Figure 5.4 depicts the dependence of the efficiency on pileup: measured by the

number of primary vertices per event. Although there may indeed be some structure

especially noticeable in the crack4 region, the trend is consistent with flat. As with

the baseline measurement, the discrepancy between data and Monte Carlo in the CB

muon measurement is recovered by adding ST muons. The binning used has been

chosen to ensure a similar number of events per bin so that error bars should remain

comparable. Figure 5.5 shows the dependence on run period, which itself is a measure
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Figure 5.4: Efficiency versus the number of primary vertices (nvtx) for STACO (left)
and MUID (right) CB muons for different η regions. The error bars correspond to the
statistical uncertainty and the error bands represent the total (statistical+systematic)
uncertainty.

of the dependence of the efficiency on both pileup and run conditions. The trend is

consistent with being flat within the systematic and statistical errors. In particular,

the bulk regions of the detector which have high statistics (barrel 0.1 < |η| < 1.1 and

end-cap 1.3 < |η| < 2.0) show good agreement.

4The region around η ≈ 0 is known as crack region. In this region, there is a hole in the muon
spectrometer to allow for cabling for the calorimetry systems.
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Figure 5.5: Efficiency versus run period for STACO (left) and MUID (right) CB
muons for the barrel region. The error bars correspond to the statistical uncertainty
and the error bands represent the total (statistical+systematic) uncertainty.

5.1.5 Results

Reconstruction Efficiency

The efficiencies were calculated for Chain 1 (STACO), Chain 2 (MUID), Combined

(CB), and Combined+Segment Tagged (CB+ST). No dependence was observed with

respect to the run periods. Accordingly, we conclude that the integrated dataset has

only minimal sensitivity to the changing conditions during the data-taking.

Figures 5.6, 5.7 (binned in pT) and Figures 5.8, 5.9 (binned in η) represent

the CB and CB+ST muon reconstruction efficiency for both data and MC and for

chain 1 and chain 2 muons. The colored points represent the data efficiency and the

correspondingly shaped black points are the efficiency for the Monte Carlo samples.

There is a noticeably lower efficiency in the |η| ≈ 0 region due to the hole in the

muon spectrometer used for cabling going through the muon spectrometer to the

calorimeter and ID. This drop in efficiency can be recovered by using CT-muons.

The CB and CB+ST efficiency in the crack region decreases with increasing pT. This
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is because the ATLAS toroidal field is very low in the transition region. The end-cap

region shows a very clear efficiency plateau going down to 4 GeV. Most regions other

than the crack have a plateau in efficiency between 6 GeV and 8 GeV.

Generally there is good agreement between data and MC. One exception to this

is at low pT in the region 0.1 < η < 1.3 for the STACO reconstruction chain where

fewer muons are reconstructed as CB muons in data than in MC. When ST muons

are added, the discrepancy between data and MC disappears. Another noticeable

feature is the large and asymmetric error bars for CB muons at high η and low pT.

This is because the unmatched signal is, in fact, highly dependent on the background

model used as the resolution of the J/ψ is very poor in this pT - η range and it

becomes increasingly difficult to determine the proper background shape. The linear

background model gives a smaller efficiency than the quadratic background model.

A plateau efficiency is reached, for both CB and CB+ST muons, at around 6 GeV.

The CB muon plateau efficiency is at around 97% for both STACO and MUID.

For CB+ST muons, the efficiency plateau is near 99%. In addition there is general

agreement between data and MC leading to scale factors largely consistent with unity

within one standard deviation. No appreciable pileup or period dependence was

found. Efficiencies are generally consistent with being flat as a function of the run

period and the number of pileup events.
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Figure 5.6: Efficiencies versus pT for STACO CB muons and CB+ST muons from
all run periods using the EF mu6 Trk Jpsi trigger. The five plots correspond to five
slices in |η|. The error bars correspond to the statistical uncertainty and the error
bands represent the total (statistical+systematic) uncertainty
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Figure 5.7: Efficiencies versus pT for MUID CB muons and CB+ST muons from
all run periods using the EF mu6 Trk Jpsi trigger. The error bars correspond to the
statistical uncertainty and the error bands represent the total (statistical+systematic)
uncertainty.
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Figure 5.8: Efficiencies versus η for STACO CB muons and CB+ST muons from
all run periods using the EF mu6 Trk Jpsi trigger. The error bars correspond to the
statistical uncertainty and the error bands represent the total (statistical+systematic)
uncertainty.
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Figure 5.9: Efficiencies versus η for MUID CB muons and CB+ST muons from all
run periods using the EF mu6 Trk Jpsi trigger. The error bars correspond to the
statistical uncertainty and the error bands represent the total (statistical+systematic)
uncertainty.
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Charge Dependence

The large ATLAS toroid, eponymous with the ATLAS detector itself, is intended

to bend muon tracks in η making measurement of the muon momentum possible. This

bending is charge dependent. Positive charged particles will be bent toward larger

values of η while negative charged particles will be bent in the negative η direction.

To see the effect of this bending on the reconstruction efficiency, the efficiency can be

measured versus q×η where q is the charge of the probe: probes with a positive q×η

bend outward in |η| and probes with negative values of q × η bend inward in |η|.
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Figure 5.10: Efficiencies versus q×η for STACO CB muons and CB+ST muons from
all run periods using the EF mu6 Trk Jpsi trigger. The error bars correspond to the
statistical uncertainty and the error bands represent the total (statistical+systematic)
uncertainty.
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Figure 5.11: Efficiencies versus q × η for MUID CB muons and CB+ST muons from
all run periods using the EF mu6 Trk Jpsi trigger. The error bars correspond to the
statistical uncertainty and the error bands represent the total (statistical+systematic)
uncertainty.
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Data/MC Scale Factors

Figure 5.12 shows the STACO data over MC scale factors while Figure 5.13 shows

the data over MC scale factors. In general, the scale factors are compatible with 1

indicating that the MC models the data in representing the reconstruction efficiency.
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Figure 5.12: Data/MC scale factors versus η for STACO CB muons from all run
periods using the EF mu6 Trk Jpsi trigger. The error bars correspond to the sta-
tistical uncertainty and the error bands represent the total (statistical+systematic)
uncertainty.
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Figure 5.13: Data/MC scale factors versus η for MUID CB muons from all run periods
using the EF mu6 Trk Jpsi trigger. The error bars correspond to the statistical un-
certainty and the error bands represent the total (statistical+systematic) uncertainty.
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5.2 High pT Muon Reconstruction Efficiency

5.2.1 Reconstruction Efficiency

To measure the reconstruction efficiency at higher momentum, the Z resonance

is used using a similar tag and probe method to that found in the J/ψ analysis. The

full details of the high-pT measurement are described in [36] and [6]. Figure 5.14

shows the muon reconstruction efficiency versus pseudorapidity for ID tracks (left)

and Combined muons (right) using the STACO reconstruction chain. The ID recon-

struction efficiency is very close to 1 for nearly the entire η region. The CB muon

reconstruction efficiency is substantially lower but, as mentioned before, the fake rate

for CB muons is very small. When measuring the efficiency of the ID track recon-

struction, the probe used is a MS track. Similarly, when measuring the MS track

efficiency, an ID track is used as the probe. Once these efficiencies are calculated,

the efficiency of advanced reconstruction algorithms, such as the STACO or MUID

Combined (CB) muon using ID muons as their probes can be measured.
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Figure 5.14: Left: measured ID muon reconstruction efficiency as a function of η
for muons with pT > 20 GeV. The efficiency is calculated with a relaxed selection
requirement on the hit multiplicity in the ID with respect to the standard selection.
The panel at the bottom shows the ratio between the measured and predicted effi-
ciencies. Right: reconstruction efficiency for Chain 1 CB only muons as a function
of η for muons with pT > 20 GeV. The panel at the bottom shows the ratio between
the measured and predicted efficiencies.

5.2.2 Comparison With Low pT Muon Efficiency

As a validation, a comparison has been made between J/ψ → µ+µ− tag and probe

and the Z → µµ tag and probe measurements using 2011 data [30]. The highest pT-

bin from the J/ψ measurement, the 8.0 GeV < pT ≤ 15.0 GeV bin, is compared

to the lowest pT-bin from the Z measurement, the 15.0 GeV < pT ≤ 20 GeV bin.

The two measurements show good agreement within their errors. This indicates that

there is continuity between the muon reconstruction efficiency at low pT and at high

pT. Similar measurements were performed using the J/ψ resonance using data from

2012 [36]. These measurements make it possible to use the low-pT muons in the

H → ZZ(∗) → 4` analysis.
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Figure 5.15: Comparison of the reconstruction efficiency from the J/ψ tag and probe
and the Z tag and probe analyses using 2011 ATLAS data. The J/ψ measurement
is for the pT range from 8 GeV to 15 GeV while the Z measurement is from the pT

range from 15 GeV to 20 GeV.

5.3 Scale and Resolution

Practically speaking, muon scale and resolution corrections must be parameter-

ized in some way. In ATLAS, the Z-resonance is used to understand the ways in

which the muon momentum scale and the resolution should be corrected in Monte

Carlo simulated data [6, 36]. Various parameters are used that help correct the in-

variant mass shape of the Z → µµ resonance in Monte Carlo to match the shape in

data. Among the parameters, sdet functions as a scale correction for the transverse

momentum while ∆adet and ∆bdet are resolution smearing parameters which affect

the momentum spread. The ∆a resolution parameter is a flat resolution smearing

correction. This parameter describes the multiple scattering contribution to the res-

olution. The ∆b parameter is a resolution parameter which scales linearly in pT. It

is related to the intrinsic resolution of the detector and any residual misalignment.

Equation 5.2 show how these smearing and scaling parameters are used to correct

89



Chapter 5: Muon Performance

the muon momentum.

pCor,detT = pMC,det
T · sdet (η)

(
1 + ∆adet(η)G(0, 1) + ∆bdetG(0, 1)pMC,det

T

)
(5.2)

The superscript is used to refer to muon momentum as measured by either the Inner

Detector, det = ID or the Muon Spectrometer, det = MS. Where G(0, 1) is a

Gaussian distributed random variable with a mean of 0 and a width of 1. To fit

for the correction parameters, the Z → µµ peak is considered in data and in MC.

The data is split into 16 regions in η. A binned likelihood fit is used that varies the

correction parameters on the MC muons to get the optimal agreement between data

and MC in the Z → µµ invariant mass peak. To avoid degeneracy in the corrections,

for the initial fit, only muons which are in the same region are used. After corrections

have been calculated for muons from a specific η region, muons from that η-region

can be used for subsequent fits as their corrections are now determined. The fit is

then iterated over all η bins. After calculating all corrections, the fit is iterated twice

to ensure the correction parameters are stable.

From other studies, it is found that the ∆aMS and ∆bID terms are negligible. This

is because the multiple scattering component of the MS tracks and the alignment of

the ID are well understood and well modeled in simulated MC events.

The result of applying these corrections to MC is found in Figure 5.16. The upper

plot shows the comparison between Z → µµ data and MC without any corrections.

The lower plot shows the comparison after correcting the MC using the procedure

outlined above. This constructed agreement indicates that the correction parameters

are properly estimated.
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Figure 5.16: The di-muon invariant mass for STACO CB muons, isolated and with
pT > 25 GeV. 2012 data is shown in black and the POWHEG simulation of Z →
µµ plus background events is shown in green. On the upper plot, no corrections
smearing or scale muon momentum corrections are applied while both smearing and
scale corrections are applied to the plot below. [6]

5.4 Conclusions

At low pT, the muon efficiency was measured in data and MC samples as a function

of the muon pT and η using muons from J/ψ decays. At high pT, the Z resonance
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is used for the same purpose. Using the understanding of muon efficiency at low-pT,

the cuts on muon pT can be relaxed in the Higgs analysis increasing the number

of signal events which pass selections. Furthermore, an understanding of the muon

reconstruction efficiency makes it possible to compare the expected and observed

Higgs event yields and determine whether the observed Higgs cross section agrees

with the Standard Model predictions.

Muon scale and resolution corrections are derived using the Z resonance in order

to bring the simulated MC and ATLAS data into agreement. These corrections have

various terms which are either linear or constant in pT. When applied the Z → µµ

line-shape agrees well between MC and data. These corrections will be very important

for the Higgs analysis when estimating the width and mass of the Higgs boson.

The systematic uncertainties for these corrections are later included in the Higgs

mass, width, and normalization fit as nuisance parameters which can vary providing

additional systematic uncertainty on the Higgs parameters. This is discussed at length

in Section 7.8.
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Higgs → ZZ(∗)→ 4` Analysis

6.1 Introduction

This chapter describes the event selection for the Higgs analysis. The goal is to

select events with two same-flavor opposite-sign dilepton pairs, henceforth called the

quadruplet. The Higgs candidates are categorized into four subchannels: 4e, 4µ,

2µ2e, and 2e2µ. 4e is when both Z-bosons decay to electrons and 4µ is when both

Z-bosons decay to muons. In the mixed channels, the leading dilepton pair is the

one with an invariant mass closer to the Z-boson mass, this is the one listed first.

For 2µ2e, the dimuon pair is closer to the Z-boson mass and for 2e2µ the dielectron

pair is closer to the Z-boson mass. One advantage of the analysis is that there is a

relatively small amount of background contamination. The dominant background is

from (Z(∗)/γ∗)(Z(∗)/γ∗)→ 4` production, henceforth called the “ZZ(∗) background.”

The production of a Z boson in conjunction with jets where leptons are reconstructed

from the jets is another source of background, this is referred to as Z+jets. Di-top
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production, tt̄, can produce leptons in the top decay chain, and lastly, WZ production

with a lepton from b-quark or c-quark jets can mimic the signal.

Because of the low level of background and the very good lepton resolution, the

H → ZZ(∗) → 4` channel is ideal for measuring the mass of the Higgs resonance and

setting direct limits on the decay width using the four-lepton invariant mass, m4l.

6.2 Data Samples

The measurement is based on a dataset corresponding to an integrated luminosity

of 4.6 fb−1 at
√
s = 7 TeV and 20.3 fb−1 at

√
s = 8 TeV of p-p collisions collected in

2011 and 2012 respectively.

6.3 Simulation Samples

Simulated data is a vital component of the H → ZZ(∗) → 4` analysis. This

simulated data is used to determine which selections can be used to select signal

events and improve the signal significance (S/
√
B) assuming a Higgs with a mass in

the 120-130 GeV range.

The signal H → ZZ(∗) → 4` is modeled using the PowHeg Monte Carlo gen-

erator [37, 38]. The primary Higgs production modes of gluon-gluon fusion (ggF)

and vector boson fusion (VBF) are calculated independently using next to leading

order (NLO) matrix elements. The Higgs transverse momentum (pT) spectrum is

reweighted to a pT spectrum calculated using higher order theory corrections. The

showering and hadronization is done using Pythia 8.1 [39] which is subsequently
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interfaced to Photos [40] for final state radiation (FSR) quantum electrodynamic

(QED) corrections.

The ZZ(∗) background is modeled using the PowHeg generator for the quark

quark production mode and using GG2ZZ for the gluon gluon fusion production

mode [41]. The Z+jets background is modeled with Alpgen [42] and then interfaced

to Pythia 8.1 for hadronization and parton showering [39]. Due to the difficulty in

modeling the Z+jets background, data is used to normalize the background using

control regions. This procedure is discussed in Section 6.4.4. The last two back-

grounds are tt̄ and WZ. The tt̄ background is modeled with PowHeg and then

interfaced with Pythia 8.1 for hadronization and parton showering. WZ is modeled

with Sherpa [43].

After generation and parton shower hadronization, the events must be run through

a simulation which models the interaction of these “generator level” particles with the

ATLAS detector. Geant4 is the program used for detector simulation [32]. Geant4

takes the particles and simulates their interaction with matter and the magnetic field

found in the ATLAS detector. Minimum bias (pile-up) events are simulated separately

and these pile-up events are superimposed onto the simulated events.

6.4 Event Selection

The analysis uses a large number of trigger paths. The analysis requires events

with multiple leptons at different momenta. To improve the overall triggering effi-

ciency, the OR of many lepton triggers is used. The pT/ET thresholds used in the

2011 data is detailed in Table 6.1. Halfway through 2011, the ET threshold for the
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electron triggers changed leading to two different triggers for the early and later run

periods. Table 6.2 shows the trigger pT/ET thresholds used for 2012 data. The

different trigger paths include additional criteria in excess of the the simple pT/ET

thresholds. These additional criteria explain why multiple single lepton triggers are

used despite having overlapping thresholds. The 2012 run has higher luminosity than

2011, accordingly the pT threshold of the lowest pT single lepton trigger was raised

with respect to 2011 to keep data collection rates manageable.

Table 6.1: Trigger thresholds used in 2011 data for the H → ZZ(∗) → 4` analysis.

Single Lepton Triggers

Channel Threshold

4µ pT > 18 GeV

4e
E > 20 GeV (early run periods)
E > 22 GeV (later run periods)

2µ2e Single lepton trigger used for 4µ OR 4e

Dilepton Triggers

Channel Threshold 1 Threshold 2

4µ pT1 > 10 GeV pT2 > 10 GeV

4e E1 > 12 GeV E2 > 12 GeV

2µ2e
pT,µ > 10 GeV Ee > 10 GeV

Dilepton trigger used for 4µ OR 4e

The triggering efficiency, as calculated using mH = 130 GeV MC, was found to

be 97.6% for the 4µ channel, 97.3% in the 2e2µ mixed channel, and 99.7% in the 4e

channel.
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Table 6.2: Trigger thresholds used in 2012 data for the H → ZZ(∗) → 4` analysis.

Single Lepton Triggers

Channel Threshold

4µ
pT > 24 GeV (low pT trigger)
pT > 36 GeV (high pT trigger)

4e
E > 25 GeV (low E trigger)
E > 60 GeV (high E trigger)

2µ2e Single lepton trigger used for 4µ OR 4e

Dilepton Triggers

Channel Threshold 1 Threshold 2

4µ
pT1 > 13 GeV pT2 > 13 GeV
pT1 > 18 GeV pT2 > 8 GeV

4e E1 > 12 GeV E2 > 12 GeV

2µ2e
pT,µ > 8 GeV Ee > 12 GeV
pT,µ > 8 GeV Ee > 24 GeV

Dilepton trigger used for 4µ OR 4e

6.4.1 Muon Preselection

There are four primary types of muons used by the H → ZZ(∗) → 4` analy-

sis. These are combined muons, segment tagged muons, stand-alone muons, and

calorimeter tagged muons. These muon types are introduced in Section 5.1.2. The

best measured muons are the combined and the segment tagged muons and these

muon types are used when possible. Calorimeter tagged and stand alone muons are

included primarily to improve the signal yield in regions of the detector where com-

bined muons cannot be reconstructed.

Combined and segment tagged muons are accepted when they have a pT > 6 GeV

and and |η| < 2.7. Calorimeter tagged muons are used only for the region in which

there is no coverage from the muon spectrometer. This is the central region and thus

calorimeter tagged muons are accepted when they have pT > 15 GeV and |η| < 0.1.
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Stand-alone muons are only used in the forward regions where the inner detector

has no coverage, thus these muons are required to have pT > 6 GeV, |η| > 2.5, and

|η| < 2.7. For the muons which have an inner detector component (CB, ST, and

CT), certain ID hit conditions are required in addition to the conventional ID track

reconstruction. These inner detector (ID) hit requirements are detailed in Table 6.3.

The transverse impact parameter cut, |d0| < 1 mm and longitudinal impact param-

Table 6.3: ID hit requirements for muons in the H → ZZ(∗) → 4` analysis.

ID Hit requirements 2011

ID Si hit requirement Expect B-layer hit = false or Number of B-layer hits ≥ 1
No. of Pixel hits + No. of crossed dead Pixel sensors > 1
No. of SCT hits + No. of crossed dead SCT sensors > 5

No. of Pixel holes + No. of SCT holes < 3

TRT Hit Requirements: |η| < 1.9 Hits + Outliers > 5 & Outliers
Hits+outliers < 0.9

TRT Hit Requirements: |η| ≥ 1.9 if (Hits + Outliers > 5): Outliers
Hits+outliers < 0.9

ID Hit requirements 2012

ID Si hit requirement No. of Pixel hits + No. of crossed dead Pixel sensors > 0
No. of SCT hits + No. of crossed dead SCT sensors > 4

No. of Pixel holes + No. of SCT holes < 3

TRT Hit Requirements: Hits + Outliers > 5 & Outliers
Hits+outliers < 0.9

0.1 < |η| ≤ 1.9

eter cut, |z0| < 10 mm, are used to reject cosmic muons. The primary vertex is

defined as the vertex with the highest
∑
p2

T of associated tracks. A ∆R overlap cut

is applied which rejects stand alone or calorimeter tagged muons which are too close

to a combined or segment-tagged muon. For CT muons the cut is ∆R < 0.1 and for

SA muons the cut is ∆R < 0.2. In Monte Carlo certain pT smearings are applied that

are intended to improve the agreement between the Monte Carlo and data. These

corrections are discussed in Chapter 5.
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6.4.2 Electron Preselection

Electrons from 7 TeV data are required to pass a cut-based selection which uses

tracking and shower profile criteria [44]. For the 8 TeV data, an improved reconstruc-

tion algorithm was used. This improved algorithm utilizes a likelihood-based electron

identification that lowers the fake rate and increase the electron reconstruction effi-

ciency [45].

Regardless of how they were reconstructed, the electrons in the H → ZZ(∗) → 4`

analysis are required to have ET > 7 GeV and a pseudo-rapidity cut of |ηcluster| < 2.47.

As with the muons, there is a cut on the longitudinal impact parameter, |z0| < 10

mm to reject cosmic tracks.

6.4.3 Quadruplet Selection

The goal is to select events with four or more leptons comprising two opposite-

sign same-flavor dilepton pairs. For the mH < 184 GeV region, one of these dilepton

pairs should be consistent with the decay of an on-shell Z-boson. Furthermore, only

one stand-alone or calorimeter-tagged muon is allowed in a quadruplet. This is to

prevent too many poorly measured or heavy flavor decay muons in a candidate event.

The leptons in the primary dilepton pair are required to have pT,1 > 20 GeV and

pT,2 > 15 GeV. The highest pT lepton in the secondary dilepton pair is required to

have pT,3 > 10 GeV. The lowest pT lepton in the secondary dilepton pair is simply

required to pass the lepton preselections: pT > 6 GeV for muons and ET > 7 GeV

for electrons. The primary dilepton pair is required to have an invariant mass of

50 GeV < m12 < 106 GeV. The secondary dilepton pair is required to pass a cut of
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mmin < m34 < 115 GeV. The parameter, mmin, takes the value of 12 GeV for m4l <

140 GeV and increases linearly between 12 and 50 GeV for 140 < m4l < 190 GeV.

When m4l ≥ 140 GeV, mmin = 50 GeV. To prevent overlap, a ∆R separation is

enforced, for same flavor leptons this cut is set at ∆Rli,lj > 0.1 and for opposite

flavor leptons the cut is ∆Rli,lj > 0.2. Lastly, a J/ψ veto is applied: if any dilepton

same flavor opposite charge pair has an invariant mass of mli,lj < 5 GeV the event

is removed. To help reject events where the lepton was produced from a b-jet or

other non-prompt process, track and calorimeter isolation cuts are applied. The

track isolation variable is the sum of the transverse momentum of tracks in a certain

∆R cone around a particle divided by the pT (or ET for electrons) of the particle in

question. This definition is given by Equation 6.1.∑
∆Ri,l

pT,i

pT,l
(6.1)

The definition of calorimeter isolation is similar. The calorimeter isolation is the sum

of the energy deposited in the calorimeter in a cone around a particle divided by the

transverse momentum (or energy for electrons) of the particle.∑
∆Ri,l

Ei

pT,l
(6.2)

The values of the cuts on track and calorimeter isolation are found in Table 6.4.

In addition to the isolation requirements, both electrons and muons must pass

impact parameter significance cuts: for muons, |d0|
σd0

< 3.5 and for electrons, |d0|
σd0

< 6.5.

This cut is to prevent non-prompt electrons and muons, typically from heavy-flavor

decay, from being included in the analysis.

Four muon and four electron candidates have multiple ways in which they can be

paired. Also in events with five or more leptons there are multiple quadruplet pairings.
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Table 6.4: Track and calorimeter isolation cuts.

Track Isolation

2011 (Cone ∆R < 0.2) < 15% for muons and electrons

2012 (Cone ∆R < 0.2) < 15% for muons and electrons

Calorimeter Isolation

2011 (Cone ∆R < 0.2) < 20% for electrons
(Cone ∆R < 0.2) < 30% for CB, ST, CT muons
(Cone ∆R < 0.2) < 15% for SA muons

2012 (Cone ∆R < 0.2) < 30% for electrons
(Cone ∆R < 0.2) < 30% for CB, ST, CT muons
(Cone ∆R < 0.2) < 15% for SA muons

If multiple quadruplets pass the selections for different channels from a single event,

the quadruplet from the channel with the highest expected rate is selected, this is, in

order: 4µ, 2e2µ, 2µ2e, and 4e. Otherwise, the quadruplet with leading dilepton mass

closest to the Z mass is selected. If two quadruplets have the same leading dilepton

mass, the one with the larger sub-leading dilepton mass is chosen.

6.4.4 Background Estimation

q

µ−

µ+

µ+

µ−

q̄ Z/γ∗

Z/γ∗

Figure 6.1: The primary leading order Feynman diagram for the Standard Model ZZ
background and its decay to muons.

The primary background to the analysis is the ZZ(∗) background. The leading

Feynman diagram for this background is seen in Figure 6.1. Because the topology is
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the same as the signal, this background is referred to as an irreducible background.

The ZZ(∗) background has four real leptons and can be reliably estimated from Monte

Carlo. The shape of the ZZ(∗) background is taken from simulated events and nor-

malized to NLO calculations [46].

The reducible background production modes are Z+jets, tt̄, and WZ. Each of

these backgrounds typically involves at least one lepton reconstructed from a jet or

other hadronic process. These reducible backgrounds are difficult to model in MC and

they are estimated with data-driven techniques. This is done separately by splitting

the final states into ll + µµ and ll + ee.

In the ll + µµ final state, the dominant contribution from Z+jets is Z+bb̄ in

which the b-quarks semileptonically. A small contribution also comes from π/K in-

flight decays. The Z+jets and tt̄ backgrounds can be distinguished from one another

using the m12 distribution. Z+jets will be sharply peaked near the Z-mass whereas

tt̄ appears much more broad. Four control regions are defined with respect to the

baseline analysis cuts as follows:

• At least one subleading muon with the impact parameter significance cut in-

verted. This is to enhance the heavy flavor contribution.

• At least one subleading muon with the isolation cut inverted to enhance the

contribution of π/K decays in flight.

• Require the subleading muons to be same-sign. This includes all contributions

except the normal SM ZZ(∗) background.

• Require the leading dilepton pair to be opposite flavor, eµ, with either a same
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or opposite sign subleading muon pair. This removes the Z+jets contribution.

The yields from these different control regions are extrapolated to the signal region

using efficiencies obtained from MC simulation. The small component from WZ

decay is estimated directly from MC.

The electron backgrounds in the ll + ee final states tend to arise from jets that

are misidentified as electrons. This can happen in three ways: 1) light flavor hadrons

such as the π± misidentified as electrons 2) photon conversion to electron pairs 3)

electrons from heavy flavor decay. These shapes are evaluated using a “3l+X” con-

trol region. The control region requires the three highest pT leptons to satisfy the full

analysis selections. The fourth lepton (X) is chosen so that the electron identification

requirements are fully relaxed. The only requirement is that there be seven or more

hits in the silicon layers of the ID with at least one of them occurring in the pixels.

To minimize the contribution from the ZZ(∗) background, the X and the other sub-

leading electron are required to have the same sign. The normalizations of the three

background components of X are extracted with a fit to the number of hits in the

B-layer (the first layer of the pixels) and the high-threshold to low-threshold TRT hit

ratio. The light-flavor hadrons will have a different high-threshold to low-threshold

TRT hit ratio than the real electrons from heavy flavor decay. Meanwhile, photon

conversions will be unlikely to leave any hits in the B-layer. The normalizations from

different background components in the control region are extrapolated to the sig-

nal region using efficiencies determined using a large sample of Z bosons which were

produced with a single additional candidate satisfying the relaxed selections detailed

above.
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The normalizations for the backgrounds using the above techniques are presented

in Section 6.5 in Table 6.5 for the 120-130 GeV invariant mass range.

6.4.5 Final State Radiation Recovery

In the analysis, two types of final state radiation (FSR) are considered and cor-

rected for. Collinear FSR is angularly close to the particle from which it originated

while far FSR (also called non-collinear FSR) occurs when the FSR candidate is pro-

duced at a large angle relative to the parent particle. Collinear FSR is only considered

for muons while far FSR can be added back to both electrons and muons. To account

for collinear FSR, a search is performed on each muon looking for FSR candidates. A

candidate can be a standard reconstructed electron or photon cluster which satisfies

the following requirements:

• The transverse energy of the cluster is greater than 3.5 GeV.

• The cone between the cluster and the muon is ∆Rcluster,µ < 0.15.

• The fraction of the cluster energy deposited in the pre-sampling layer of the

electromagnetic calorimeter divided by the total energy is greater than 10%.

Additionally, a candidate can be a simple 3×5 energy cluster provided it satisfies the

following requirements:

• The transverse energy of the cluster is 1.5 GeV < ET < 3.5 GeV.

• The cone between the cluster and the muon ∆Rcluster,µ < 0.15.
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• The fraction of the cluster energy deposited in the pre-sampling layer of the

electromagnetic calorimeter divided by the total energy is greater than 10%.

A search is also performed which looks for far FSR candidates. Far FSR candidates

must be photon objects which pass tight identification criteria and the following cuts:

• The cone between the cluster and the lepton is ∆Rcluster,l > 0.15.

• The transverse energy of the cluster must pass ET > 10 GeV

• The FSR candidate must be isolated
∑

∆R<0.40ET < 4 GeV.

A maximum of one FSR candidate is used per event. Priority is given to collinear

FSR candidates provided the invariant mass of the corresponding dilepton pair to

which the FSR candidate is associated satisfies 66 < mµµ < 89 GeV and after the

correction, the three-body invariant mass satisfies mµµγ < 100 GeV. Only FSR candi-

dates corresponding to leptons from the leading dilepton candidate will be considered.

If multiple FSR candidates exist, the one with the highest cluster ET is selected.

If no collinear FSR candidates are added into the event, the highest far FSR

photon with the highest ET passing mll < 81 GeV and m``γ < 100 GeV will be

selected. The FSR candidate must be associated with the leading dilepton pair.

From MC-studies, it is expected that around 4% of events will have a collinear

FSR-correction applied and 1% will have a non-collinear FSR-correction applied.

These same studies show that around 85% of corrected events have a genuine FSR pho-

ton while the remaining FSR-candidates originated from pile-up or muon-ionization.

105



Chapter 6: Higgs → ZZ(∗) → 4` Analysis

6.4.6 Z Mass Constraint

The mass resolution of the 4-lepton invariant mass is limited by the intrinsic width

of the Z-boson which is an intermediate decay product. The probability distribution

of the true mass of the Z-boson, mtrue
Z , given the measured dilepton mass, mreco

Z , can

be written as follows:

p
(
mtrue
Z |mreco

Z

)
∝ p

(
mreco
Z |σmreco

Z
,mtrue

Z

)
· p
(
mtrue
Z |mZ ,ΓZ

)
(6.3)

On the right hand side, we have p
(
mreco
Z |σmreco

Z

)
which can be thought of as an

invariant mass response function. Meanwhile the second term: p (mtrue
Z |mZ ,ΓZ) can

be thought of as the relevant truth distribution which should be a Breit-Wigner.

To apply a mass-constraint on a very narrow resonance such as the J/ψ, one

can simply replace the mreco
Z with the mass of the resonance. For the Z resonance,

however, the natural width is not negligible compared to the detector resolution. In

fact, both are on the GeV scale. To perform a Z-boson mass constraint constraint

in this regime the goal is to not just select the pole Z mass but to find the maximum

likelihood value of the mtrue
Z for a given reconstructed mass value. This method

tries to correct the particle momenta to the most likely true Z mass using a gaussian

resolution model for the uncertainty on the momenta and a Breit-Wigner distribution

for the distribution of the mtrue
Z .

The effect of the Z-boson mass constraint on the mass of the leading Z and on

the 4-lepton invariant mass is seen in Figure 6.2. The effect is to narrow the peak in

the 4-lepton invariant mass distribution while in the leading Z-boson mass, the effect

is to bring the values closer to the pole mass of the Z-boson.

Although the Z-boson mass constraint is very useful in decreasing the width of a
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Figure 6.2: Left: the effect of the Z-boson mass constraint on the reconstructed
mass of the leading Z for the 4µ channel, the y-axis shows the reconstructed Z-
boson mass after constraint and the x-axis is the reconstructed Z-boson mass before
constraint. Right: the effect of the Z-boson mass constraint on the reconstructed 4-
lepton invariant mass system, the y-axis shows the reconstructed 4-lepton mass after
constraint and the x-axis is the 4-lepton mass before constraint.

Monte Carlo based template signal model, the Z-boson mass constraint is not used in

a per-event framework because the mass constraint makes it difficult to parameterize

the response functions.

6.4.7 ZZ Discriminant

To help differentiate between signal and background events, a boosted decision tree

(BDT) is used to increase the separation between the signal and the irreducible ZZ(∗)

background [47]. This BDT is later used in the mass and width fitting as a second

dimension to be used in conjunction with the invariant mass. Because the BDT uses

the kinematic information from each event, it can be thought of as an encapsulation

of the kinematics for the event. The BDT is trained on signal and background MC

samples. Higgs MC with mH = 125 GeV is used as the signal sample while SM ZZ(∗)

MC is used for the background. All events are required to pass the analysis selections
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and only events in the invariant mass window of 115 < m4l < 130 GeV are used.

The BDT uses three variables: the η of the 4-lepton system, the pT of the 4-lepton

system, and a Matrix-Element based kinematic discriminant (KD). Mathematically

the expression for the KD is seen in Equation 6.4.

KD = log

(
ME2

sig

ME2
ZZ

)
(6.4)

Where MEsig is the Matrix-Element of the Higgs signal and MEZZ is the Matrix-

Element of the ZZ(∗) background. Because these Matrix-Elements are based on the

four 4-vectors of the leptons, this KD encapsulates the kinematic information about

the event as it pertains to signal-background discrimination. The Matrix-Element

itself is calculated at lowest order using MadGraph [48] by using the H → ZZ(∗) →

4` process as the signal process and qq̄ → 4` as the background process. On an event-

by-event basis, the Higgs mass variable is set to be the reconstructed m4l before FSR

corrections and the Z-mass constraint of the event. Figure 6.3 shows the inputs on

which the BDT is trained.

Figure 6.4 shows the boosted decision tree discriminant and its value for both

signal and background Monte Carlo samples. This BDT discriminant ranges from -1

to 1 with -1 being most background-like and 1 being most signal-like. As is seen in

Figure 6.4, the BDT discriminant provides very good separation between the signal

and background. The BDT is trained separately for 4e, 4µ, and the mixed 2e2µ and

2µ2e channels.
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Figure 6.3: Plots of pT,4l, η4l, and KD for Higgs signal MC and ZZ(∗) background
MC. These variables are the inputs on which the BDT is trained.
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Figure 6.4: Boosted decision tree (BDT) variable for Higgs signal MC and ZZ(∗)

background MC.
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6.5 Conclusions

The event yields in the 120 GeV < m4l < 130 GeV range after the Z-mass con-

straint are presented numerically in Table 6.5 with the total systematic uncertainty

stated. Assuming the existence of a SM Higgs with a mass of 125 GeV, we expect

26.5±1.7 events in the 120-130 GeV range. An excess of 10 events is observed in data,

resulting in a higher than expected production cross section for the H → ZZ(∗) → 4`

analysis.

Table 6.5: The number of expected signal (mH = 125 GeV), expected background,
and observed data events after the event selection cuts within the 120 GeV < m4l <
130 GeV range after the Z-mass constraint. The quoted uncertainties represent the
systematic uncertainty on the various signal and background normalizations.

Final State Signal ZZ(∗) Z+jets,tt̄ s/b Expected Observed√
s = 7 TeV

4µ 0.91± 0.09 0.46± 0.02 0.10± 0.04 1.7 1.47± 0.10 2
2e2µ 0.58± 0.06 0.32± 0.02 0.09± 0.03 1.5 0.99± 0.07 2
2µ2e 0.44± 0.04 0.21± 0.01 0.36± 0.08 0.8 1.01± 0.09 1
4e 0.39± 0.04 0.19± 0.01 0.40± 0.09 0.7 0.98± 0.10 1

Total 2.32± 0.23 1.17± 0.06 0.96± 0.18 1.1 4.45± 0.30 6√
s = 8 TeV

4µ 5.28± 0.52 2.36± 0.12 0.69± 0.13 1.7 8.33± 0.6 12
2e2µ 3.45± 0.34 1.67± 0.08 0.60± 0.10 1.5 5.72± 0.37 7
2µ2e 2.71± 0.28 1.17± 0.07 0.36± 0.08 1.8 4.23± 0.30 5
4e 2.38± 0.25 1.03± 0.07 0.35± 0.07 1.7 3.77± 0.27 7

Total 13.8± 1.4 6.24± 0.34 2.00± 0.28 1.7 22.1± 1.5 31√
s = 7 TeV and

√
s = 8 TeV

4µ 6.20± 0.61 2.82± 0.14 0.79± 0.13 1.7 9.81± 0.64 14
2e2µ 4.04± 0.40 1.99± 0.10 0.69± 0.11 1.5 6.72± 0.42 9
2µ2e 3.15± 0.32 1.38± 0.08 0.72± 0.12 1.5 5.24± 0.35 6
4e 2.77± 0.29 1.22± 0.08 0.76± 0.11 1.4 4.75± 0.32 8

Total 16.2± 1.6 7.41± 0.40 2.95± 0.33 1.6 26.5± 1.7 37

Using the selections and background modeling briefly discussed in this section, the

data can be compared to the background shapes and normalizations. This comparison
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is shown in Figure 6.5. On the left, the m4l distribution of data events (shown in

black) is compared to the ZZ(∗) background in red, the reducible backgrounds in

purple, and the Higgs MC (mH = 125 GeV) signal in blue. The signal model is scaled

up by a signal strength of 1.66 to account for the excess of observed events in data.

This signal strength was measured using a 2D-template approach detailed in [7]. On

the right, the same comparison between data and signal/background shapes is shown

in 2D using the m4l and BDT as observables.
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Figure 6.5: Left: distribution of the four-lepton invariant mass for the selected can-
didates in the m4l range 80 − 170 GeV for the combined 7 TeV and 8 TeV data
samples. Superimposed are the expected distributions of a SM Higgs boson signal
with mH = 124.5 GeV normalized to the measured signal strength, as well as the
expected ZZ(∗) and reducible backgrounds. Right: distribution of the BDT output,
versus m4l for the selected candidates in the 110 − 140 GeV m4l range for the com-
bined 7 TeV and 8 TeV data samples. The expected distribution for a SM Higgs with
mH = 124.5 GeV is indicated by the size of the blue boxes, and the total background
is indicated by the intensity of the red shading [7].
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Mass and Width Measurement

7.1 Introduction

To measure the width and mass of the Higgs resonance, it is necessary to under-

stand how these parameters affect the observables measured by the ATLAS detector.

The observables are the four-lepton invariant mass and the kinematics of the four lep-

tons while the parameters of interest are the Higgs mass, width, and signal strength.

To relate these observables to the parameters of interest, we write a probability den-

sity function (PDF) which gives the probability that a specific set of observables will

be measured for given values of the Higgs parameters.

To construct such a PDF, two approaches can be used. In one, MC simulated

data are generated for different values of the parameters. The shape of the MC for a

specific observable is used to construct the PDF. Morphings between the MC shapes

for different values of the parameters can be performed so that the PDF is continuous.

A second approach starts from the ground up. It works by choosing a class of
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functions that describe the shape of the observables and take the parameters of the

Higgs as inputs. Because the Higgs boson is an unstable particle, the invariant mass

distribution of its decay products can be described by the Breit-Wigner distribution.

Furthermore the Breit-Wigner has, as inputs, the mass of the resonance and the width

of the resonance. As such it is is a perfect candidate to use for the signal PDF of the

Higgs boson. There are, however, a few complications. As discussed in Chapter 4, the

ATLAS detector measures the momentum and energy of particles using tracking and

calorimetry. These techniques have an intrinsically statistical component that causes

the measured momentum/energy to differ from the true momentum or energy of the

particle. Accordingly, the reconstructed four-lepton invariant mass will differ from the

true four-lepton invariant mass. The function that relates the measured four-lepton

invariant mass to the true four-lepton invariant mass is called the mass response

function. By convolving the mass response with the Breit-Wigner, it is possible to

transform the underlying Breit-Wigner distribution into a distribution that describes

the shape of the four-lepton invariant mass at reconstruction level. This procedure is

used to describe the shape of the reconstruction level signal distribution and relate the

observables to the Higgs parameters. In addition, some leptons may emit radiation

before being measured in the detector. This radiation will reduce the measured

momentum/energy thereby reducing the reconstructed four-lepton invariant mass. A

radiative tail is convolved with the signal model to account for this FSR energy loss.

This approach is known as the event-by-event approach because it utilizes resolution

information on a per-event level so that the PDF will be tuned specifically to the

data events being fit.
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The structure of this Chapter is as follows. In Section 7.2, we present the mass

response function obtained by combining the lepton momentum response functions.

After discussing the math behind this combination, we turn to the calculation of the

individual lepton momentum response functions using leptons from MC simulated

data in Section 7.2.1 for muons and Section 7.2.2 for electrons. The response functions

are then validated with MC and data using the Higgs and Z resonances.

In Section 7.3, the derivation of the signal mass model is considered. As dis-

cussed above, this model is formed by convolving the detector mass response function

with the truth distribution. The truth invariant mass distribution, which is funda-

mentally a Breit-Wigner, is shaped by the acceptance effects from the analysis cuts

(Section 7.3.1) and the final state radiation that creates a radiative tail (Section 7.3.2).

The numerical convolution techniques that are used to speed up the convolution of

this modified truth distribution with the mass response are detailed in Section 7.3.4.

Finally the signal model is validated using MC.

To further differentiate between signal and background, a ZZ discriminant is

computed using various observables as inputs. This ZZ discriminant, also known as

the BDT, is used as a second observable in the likelihood maximization along with the

invariant mass. Accordingly signal and background models are needed for the BDT.

The signal BDT model is derived using smoothed MC based templates in Section 7.4.

Similarly, the invariant mass and BDT background models are made using smoothed

MC or data-driven templates as discussed in Section 7.5 and Section 7.6.

With all the models used for the likelihood maximization in place, we discuss the

relevant systematic uncertainties and how they are treated in the fit. In Section 7.8,
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a ranking of these systematic uncertainties is provided and their relative effect on

the mass and signal strength measurements is discussed. Lastly, the estimated values

of the Higgs mass, width, and signal strength for data and MC are presented in

Section 7.10.

7.2 Detector Response Functions

To fit the Higgs mass using event-by-event response information, it is necessary

to understand how the Higgs decay products interact with the ATLAS detector. In

this analysis, these are the four leptons. It is possible to factorize the Higgs mass

response as a combination of the individual kinematic responses of the four leptons.

When a lepton passes through the detector, it will leave a track in the inner de-

tector. Electrons deposit their energy in the electromagnetic calorimeter while muons

pass through the calorimeter and leave a track in the muon spectrometer. Using the

energy deposited or the hits from these tracks, it is possible to measure the momen-

tum or energy and direction of the lepton. The difference between these measured

kinematics and the actual kinematics is known as the lepton detector kinematic re-

sponse. There is a statistical component to this response. In other words, if identical

leptons pass through the exact same portion of the detector, a different set of kine-

matics will be measured. The ensemble of the difference between the measured and

true kinematics comprises the lepton detector response function.

In practice, a few simplifying assumptions are made that reduce the complexity of

understanding the lepton response. As seen in Section 4.6, the angular resolution of

the ATLAS tracking is very good and the effect of its uncertainty on the invariant mass
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is negligible. Because of this, the lepton kinematic response can be approximated by a

one dimensional lepton response in momentum or energy. Using this approximation, it

is possible to derive a relatively simple expression for the Higgs mass response using

individual muon momentum responses. In the following derivation xi represents a

random variable from the momentum weighted lepton momentum/energy response

function for the ith lepton, xH is a random variable from the Higgs mass response,

pH is 4-momentum of the Higgs, pi is the 4-momentum of the ith muon, and mH is

the mass of the Higgs candidate. The mass response of the Higgs can be related to

the individual momentum responses through the following derivation:

(pH)2 = (mH)2 = (p1 + p2 + p3 + p4)2 (7.1)

m2
H =

(
4∑
i=1

pi

)2

(7.2)

m2
H =

4∑
i=1

(
p2
i +

∑
j 6=i

pi · pj
)

(7.3)

m2
H =

4∑
i=1

(
m2
` + 2

∑
j>i

pi · pj
)

(7.4)

As the quantities are generic, it holds true for either reconstructed or truth quantities:

(mreco
H )2 =

4∑
i=1

(
m2
l + 2

∑
j>i

precoi · precoj

)
(7.5)

The following relations precoi = ptruei (1 + xi) and mreco
H = mtrue

H (1 + xH) are used to

make substitutions.

(
mtrue
H (1 + xH)

)2
=

4∑
i=1

(
m2
l + 2

∑
j>i

ptruei (1 + xi) · ptruej (1 + xj)

)
(7.6)

Because the typical Higgs mass resolution is 1-2 GeV and the m4l values are around

125 GeV, a typical random variable from the Higgs mass response, xH , is ∼ 0.01 and
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thus x2
H will be on the order of 0.0001 which indicates that the squared terms can be

safely ignored.(
1 + 2xH +�

��
0

x2
H

)(
mtrue
H

)2
=

4∑
i=1

(
m2
` + 2

∑
j>i

ptruei · ptruej

(
1 + xi + xj +��

�*0
xixj

))
(7.7)

We use equation (7.4) to cancel terms:

2xH
(
mtrue
H

)2
=

4∑
i=1

(
2
∑
j>i

ptruei · ptruej (xi + xj)

)
(7.8)

The final equation for a random variable from the Higgs mass response function is

thus:

xH =
1

(mtrue
H )2

4∑
i=1

(∑
j>i

ptruei · ptruej (xi + xj)

)
(7.9)

To measure the lepton response functions, MC simulated data is used. Later, checks

are done to ensure that these response functions can be used in ATLAS data. Leptons

are grouped into regions that have a similar response. It is known that passing through

physically different regions of the ATLAS muon spectrometer, ATLAS calorimeter, or

the ATLAS inner detector will result in a different average response. To account for

this, the response is binned in slices of η. Furthermore, leptons of different momenta

(or energy for electrons) are likely to have a different response and a second binning

axis of pT (ET for electrons) is also used. Rather than measure the actual momentum

response which would be given by preco − ptruth (p → E for electrons), the weighted

response is used: preco−ptruth
ptruth

. This weighted response accounts for a first order linear

dependence on the momentum. Practically speaking, for each lepton, the weighted

response, preco−ptruth
ptruth

, is calculated and put into a histogram corresponding to the η

and pT (or ET for electrons) of the lepton. An additional binning in charge is used
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for muons. A functional form is chosen to describes the shape of these response

histograms and the response histograms are fit using this chosen function.

7.2.1 Muon Response Functions

Fitting

The function chosen to fit the muon response histograms must be able to describe

the main features of this distribution. Looking at a few examples in Figure 7.1, it is

clear that the peak is largely Gaussian with a sometimes asymmetric tail. The chosen

function must be easy to convolve with other muon momentum response functions

using Equation (7.9) to derive the mass response function. Because the peak is already

Gaussian and Gaussians are easy to convolve with each other, a sum of Gaussians

is an ideal choice when parameterizing the individual muon response functions. For

the muons, two Gaussians are sufficient to describe the peak and the tail of the

muon momentum response functions. In Figure 7.1, four example fits are shown.

The position and width of the tail and peak Gaussians show a certain degree of

variability although in general, the tail Gaussian is much smaller and wider than

the peak Gaussian. In order to improve the fit stability, a fit function is used which

relates the position and width of the tail Gaussian to the width of the peak Gaussian

respectively. The formula describing the fitting function is given by Equation 7.10.

f (pT , η, q) = f ·G (µ1, σ1) + (1− f) ·G (α · σ1, β · σ1) (7.10)

Where µ1 is the position of the peak Gaussian, σ1 is the width of the peak Gaussian,

f is the fractional normalization of the peak Gaussian, and α and β are scaling factors

119



Chapter 7: Mass and Width Measurement

true
)/p

true
-p

reco
(p

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

E
ve

nt
s 

/ (
 0

.0
08

 )

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

MC Reco

2 Gaussian Sum

Peak Gaussian

Tail Gaussian

true
)/p

true
-p

reco
(p

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

E
ve

nt
s 

/ (
 0

.0
08

 )

0

0.005

0.01

0.015

0.02

0.025
MC Reco

2 Gaussian Sum

Peak Gaussian

Tail Gaussian

true
)/p

true
-p

reco
(p

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

E
ve

nt
s 

/ (
 0

.0
08

 )

0

0.01

0.02

0.03

0.04

0.05

0.06

MC Reco

2 Gaussian Sum

Peak Gaussian

Tail Gaussian

true
)/p

true
-p

reco
(p

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

E
ve

nt
s 

/ (
 0

.0
08

 )

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

MC Reco

2 Gaussian Sum

Peak Gaussian

Tail Gaussian

Figure 7.1: Sample response histograms for muons from 8 TeV MC using a 2-Gaussian
fit function. Upper left is for is for positively charged muons with η = 2.7 to 2.4 and
pT = 6 GeV to 10 GeV. Upper right is for is for positively charged muons with η = 1.3
to 1.4 and pT = 25 GeV to 30 GeV. Bottom left is for is for positively charged muons
with η = −0.2 to −0.1 and pT = 35 GeV to 40 GeV. Bottom right is for is for
negatively charged muons with η = 0.9 to 1.0 and pT = 30 GeV to 35 GeV.

which relate σ1 to the position and width of the tail Gaussian. Constraints are set

on β to ensure that the tail Gaussian will always be wider than the peak Gaussian.

Additionally, f is constrained to be greater than 0.6 to ensure that the bulk of the

distribution will be captured by the peak Gaussian.

The resulting two dimensional map in pT and η is shown in Figure 7.2 for charge

minus CB muons from a variety of 8 TeV Higgs MC samples with masses of 120,

121, 122, 123, 123.5, 124, 124.5, 125, 125.5, 126, 127, 128, 129, and 130 GeV. The

muons are from events that have passed the reconstruction level analysis selections
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described in Chapter 6. The assumption that the source of the muons does not

matter is tested when the muon response functions derived from Higgs samples are

validated with the Z-resonance in Section 7.2.1. From this map, it is clear that the

peak and tail Gaussians are wider in the high-η and transition regions as would be

expected. White areas are those in which insufficient statistics exist to calculate a

response function. In these regions, the nearest response function, in pT, is used.

Separate maps are made for muons from the 7 TeV and 8 TeV MC samples. MC is

used to populate the response histograms. The muons used are from different Higgs

MC samples with different values of mH . All muons have passed the Higgs selections

detailed in Chapter 6.

Equation (7.9) defines the relationship between a random variable in the Higgs

mass response and the random variables for the individual lepton momentum re-

sponses. This relation is used to combine the muon responses together into a Higgs

mass response. This combination gives a 24 (16) Gaussian sum, an example of which

is seen in Figure 7.3.
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Figure 7.2: The map of the parameters for the two Gaussians in the muon response
functions for muons from 8 TeV Higgs MC samples with different mH . These are
binned in pT and η. The maps shown are for negatively charged muons. The upper
left shows mean of the peak Gaussian while the upper right shows the mean of the
tail Gaussian. The middle left shows the width of the peak Gaussian while the middle
right shows the width of the tail Gaussian. The bottom plot shows the fraction of
events in the peak Gaussian.
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Figure 7.3: Sixteen Gaussian mass response for a single Higgs candidate from MC
simulated data.

Validation

After computing the response functions, they can be validated on various MC

samples and on data from the ATLAS detector. In MC this validation is done by

smearing the truth mass with the mass response calculated for that specific parti-

cle: msmear
4l = mtrue

4l (1 + x) where x is a random number from the mass response

function for that particle. Figure 7.4 shows the smeared truth m4l compared to the

reconstructed m4l from an 8 TeV Higgs MC sample with mH = 125 GeV. There is

good agreement to within the 5% level for the bulk of the distribution. Using the

same procedure, a similar validation was done using 8 TeV Z → µµ MC as shown in

Figure 7.5. Again, there is good agreement between the reconstruction mass and the

smeared truth model.

The validation can be extended using ATLAS data to ensure that the MC-derived

response functions can be used in data. As the ATLAS detector has collected many
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Figure 7.4: Comparison of the truth m4µ distribution smeared using the muon re-
sponse functions with the reconstructed m4µ from 125 GeV Higgs MC generated at
8 TeV.
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Figure 7.5: Comparison of the truth m2µ distribution smeared using the muon re-
sponse functions with the reconstructed m2µ from 8 TeV Z → µµ MC.
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millions of di-muon events from the decay of Z-bosons, this resonance is ideal to test

the validity of the model. Due to the obvious lack of truth information in ATLAS

data, it is not possible to do a simple truth-smearing as was done for the MC. Instead,

the truth Z-lineshape, derived from MC simulation, is convolved with the mass-

response for each event. The convolutions are then summed together to create the

reconstruction-level invariant mass model. Doing a full convolution for millions of

events is time consuming and certain speed-ups are possible to reduce the computation

time. In particular, using a Monte-Carlo integration rather than a discrete numerical

integration greatly speeds up the process. The results of the integration are shown

in Figure 7.6 with the MC-integrated model shown in blue and the reconstructed

m2µ from data shown in black. The agreement between the MC-integrated model

and the reconstructed m2µ indicates that the muon response functions can be used

to reproduce the reconstruction level lineshape.
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Figure 7.6: The truth Z-lineshape, derived from MC simulation, is convolved with
the mass-response for each event from 8 TeVZ → µµ data. The convolutions are
then summed together to create the reconstruction-level invariant mass model seen
in blue. The black points are the reconstructed m2µ for 8 TeV Z → µµ ATLAS data.

Muon Response Systematics

The scale factors and smearing parameters obtained from the Z and J/ψ resonances

discussed in Chapter 5 are used to correct the MC muons so that they agree with the

ATLAS data [6]. Each correction has systematic uncertainties associated with them

and these systematics will lead to differences in the muon response functions that

must be accounted for when using the response functions to produce a signal model.

The systematic uncertainties are provided in the form of up and down variations

on the corrections for each source of system uncertainty. The up variation refers to

the +1σ upper bound on the correction while the down variation refers to the −1σ

lower bound on the correction. Practically speaking these up and down variations

will be used to create two additional signal models corresponding to the variation

of these systematic uncertainties. A morphing is done between these three models
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(nominal, up and down) so that a nuisance parameter under a Gaussian constraint

can be fit for along with the Higgs parameters. This procedure is discussed at greater

length in Section 7.8.

For muons, the systematic sources of uncertainty are the momentum scale correc-

tion, the Inner Detector (ID) resolution and the Muon Spectrometer (MS) resolution.

To determine the effect of these systematic sources of error on the muon momentum

response functions, the muon response functions are recalculated with the momentum

corrections varied up and down by the systematic uncertainty. Thus, for the three

muon momentum systematics, there will be seven sets of response functions:

1. Nominal: muon response functions with the default MCP corrections (the
response functions already presented)

2. Scale up: muon response functions with the systematic scale correction varied
up.

3. Scale down: muon response functions with the systematic scale correction
varied down.

4. ID up: muon response functions with the systematic ID resolution correction
varied up.

5. ID down: muon response functions with the systematic ID resolution correc-
tion varied down.

6. MS up: muon response functions with the systematic MS resolution correction
varied up.

7. MS down: muon response functions with the systematic MS resolution correc-
tion varied down.

To consider the effect of these systematic uncertainties, the response functions from

each method are used to generate mass responses which are then used, as discussed in

the validation section above, to create a signal model. The result is compared to both

the nominal model and the reconstructed mass. In Figure 7.7, the reconstruction level
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Figure 7.7: Truth m2µ distribution convolved with the per-event Z mass response for
nominal (blue), scale up (aqua), and scale down (violet) muon response functions and
compared to 8 TeV Z → µµ data.

m2µ distribution is compared to the nominal model and the models with scale up and

scale down resolution functions. This systematic error band largely encompasses the

discrepancy between the reconstructed m2µ in data and the model.

The other two systematic uncertainties, ID and MS resolution, are shown in Fig-

ure 7.8 and Figure 7.9, these systematics have negligible effect and can be ignored in

the context of the muon response functions.
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Figure 7.8: Truth m2µ distribution convolved with the per-event Z mass response for
nominal (blue), ID up (aqua), and ID down (violet) muon response functions and
compared to 8 TeV Z → µµ data.
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Figure 7.9: Truth m2µ distribution convolved with the per-event Z mass response for
nominal (blue), MS up (aqua), and MS down (violet) muon response functions and
compared to 8 TeV Z → µµ data.
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7.2.2 Electron Response Functions

The electron energy is measured using the energy deposition in the electromagnetic

calorimeter. This energy measurement is combined with an inner detector track to

improve the energy resolution. This is known as the E-p combination. As with

the muons, the electron detector response is estimated using electrons from MC and

considering the weighted electron energy response given by Equation 7.11:

xe =
Ereco
e − Etrue

e

Ereco
e

(7.11)

The distribution has a core which is described by the primary Gaussian and a

large tail which is caused by the radiative energy loss of the electrons. This tail

is best reproduced by an additional two Gaussians. This full three-Gaussian sum

is fit to the MC simulated data which has all the relevant corrections applied. An

example fit using this 3-Gaussian sum is shown in Figure 7.10. The computation

and validation of these electron response functions was done by Graham Cree in

conjunction with others from Carleton University and the Max-Planck Institute in

Munich. The electron response model is validated in a similar manner to the muon

response function.
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Figure 7.10: Example of the distribution of the fractional deviation of the recon-
structed electron energy from the true energy. The data points are fitted with a sum
of three normal distribution with the first Gaussian function constrained to describe
the peak region and the second and third Gaussian functions to model the tail to
negative values. Plot made by Graham Cree.

7.3 Signal Mass Model

The signal mass model starts by taking the truth distribution of the particle’s

invariant mass. The decay of any unstable particle will occur with a Breit-Wigner

invariant mass distribution. This distribution is given by the following equation:

Breit-Wigner (m) =
k

(m2 −M2)2 +M2Γ2
(7.12)

Where M is the mass of the resonance, Γ is the decay width, and k is a normalization

constant which depends on both the mass and width of the resonance. In Figure 7.11,

a comparison between the MC truth at generator level, the notation for which is

mtrue,born
4l , and the resonance Breit-Wigner is shown. The MC events used are those

which have passed the reconstruction level analysis selections detailed in Chapter 6.
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Figure 7.11: Truth m4µ distribution at generator level from 125 GeV Higgs MC is
compared to a Breit-Wigner with a mass of 125 GeV and a width of 4.083 MeV.

7.3.1 Acceptance Effects

For a very narrow resonance it is unlikely that the analysis selections will shape

the truth-level invariant mass distribution because each event will have a true mass

very close to the mass of the resonance. For a wider resonance, however, the truth

distribution will likely be shaped by the analysis selections. In the case of the Higgs

analysis, events on the left tail of the Breit-Wigner will be more likely to fail the pT

and invariant mass cuts while those on the right tail are more likely to pass these

selections. Such effects are clearly visible in Figure 7.12 which compares the invariant

mass distribution for events from from Higgs MC generated with a 3 GeV width that

have passed the analysis selections to a Breit-Wigner with the same width. The ratio

plot shows the truth level acceptance of the reconstruction level analysis selections.

By construction, the “acceptance ratio” corrects the Breit-Wigner so that it

matches the truth lineshape in MC after reconstruction level analysis selections as
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Figure 7.12: Truth m4µ distribution at generator level from 125 GeV Higgs MC with
a width of 3 GeV is compared to a Breit-Wigner with a mass of 125 GeV and a width
of 3 GeV.

seen in Equation 7.13 where “Acc” stands for the acceptance ratio.

BWcorrected
(
mtrue,born

4l ,ΓH ,mH

)
= Acc

(
mtrue,born

4l

)
·BW

(
mtrue,born

4l ,ΓH ,mH

)
(7.13)

It remains to be seen, however, if the acceptance ratio is invariant for MC samples

with different widths. Figure 7.13 shows the acceptance ratio for two MC samples

with different width: ΓH = 3 GeV and ΓH = 6 GeV. A polynomial fit is performed on

each acceptance ratio. Their compatibility indicates that the same acceptance ratio

can be used to correct the Breit-Wigner for different values of ΓH . The acceptance

ratio used in the analysis is calculated by combining the 6 GeV and 3 GeV samples

and using the increased statistics to fit a 2nd order polynomial. As expected, the

acceptance ratio properly corrects the Breit-Wigner to agree with the truth invariant

mass distribution after analysis selections as seen in Figure 7.14.
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Figure 7.13: Truth m4µ at generator level divided by the Breit-Wigner for 125 GeV
Higgs MC with 3 and 6 GeV widths. The colored lines represent 2nd order polynomial
fits.
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Figure 7.14: Truth m4e at generator level from 125 GeV Higgs MC with a width of
3 GeV is compared to Acceptance × Breit-Wigner with a mass of 125 GeV and a
width of 3 GeV.
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7.3.2 Final State Radiation

Even if the muons were perfectly measured, their four-momenta would not sum

together to get an invariant mass distribution as seen in Figure 7.11 due to final

state radiation. This FSR will add a “tail” to the left side of the invariant mass

distribution1. This truth invariant mass distribution, after subtracting final state

radiation will be called the “bare” truth mass, mtrue,bare
4l . The bare truth distribution

from 125 GeV Higgs MC that passes the analysis selections can be seen in Figure 7.15.

Using these two quantities: mtrue,born
4l (seen in Figure 7.11) and mtrue,bare

4l (seen in

Figure 7.15), it is possible to describe the radiative tail in a coherent way:

Tail = mtrue,bare
4l −mtrue,born

4l (7.14)

In Figure 7.16, the tail distribution is shown for different MC samples with different

Higgs masses and widths. The tail distributions are similar thereby indicating that the

same tail distribution can be used to correct the Breit-Wigner distribution regardless

of mass or width. Rearranging Equation 7.14, the bare mass is simply:

mtrue,bare
4l = Tail +mtrue,born

4l (7.15)

Because the mtrue,born
4l distribution is simply the modified Breit-Wigner (Acceptance

× Breit-Wigner), the bare truth PDF can be written as the convolution:

PDFbare,true = Tail⊗ (Acc ·BW ) (7.16)

1The electron response functions are computed using the born (pre-FSR) energy. This is because
collinear FSR is oftentimes measured in the electron’s calorimeter energy cluster and so the electron
response cannot be factorized from the FSR like the muon response can.
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Figure 7.15: Bare truth distribution m4µ from 125 GeV Higgs MC. An asymmetrical
FSR tail is seen on the left-hand side of the distribution.
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The convolution can be written explicitly as the following integral:∫ ∞
−∞

Tail
(
mtrue,bare

4l −mtrue,born
4l

)
Acc

(
mtrue,born

4l

)
BW

(
mtrue,born

4l ,ΓH ,mH

)
dmtrue,born

4l

(7.17)

Using this procedure, it is possible to compare the bare truth distribution from MC

to the bare truth PDF constructed in this way. This comparison between the PDF

and Higgs MC is seen in Figure 7.17 for Higgs MC samples (mH = 125 GeV) with

widths of 3 GeV and 6 GeV. As discussed in Section 6.4.5, there is an attempt to add

reconstructed FSR candidates back into an event. To account for this using the tail

distribution, the difference between the reconstructed invariant mass (denoted mreco
4l )

and the invariant mass after the FSR candidate (denoted m
reco,w/fsr
4l ) is added to the

FSR tail histogram. This leads to a redefinition of the tail as:

Tail = mtrue,bare
4l −mtrue,born

4l +m
reco,w/fsr
4l −mreco

4l (7.18)

This tail distribution with the FSR candidates added, calculated using the 8 TeV

Higgs MC sample with mH = 125 GeV after analysis selections, is shown for the

4µ channel in Figure 7.18. This leads to a tail distribution that is no longer zero

at all values greater than zero. This is due to instances when fake or mismeasured

FSR candidates are added back into the event. Using this new tail histogram in the

convolution gives good agreement between reconstructed m4µ after the FSR correc-

tions and the signal model. The tail shown in Figure 7.18 is for the 4µ channel. As

mentioned earlier, electron response functions are calculated with respect to the born

truth quantities. Accordingly, the value used to fill the tail histogram for channels
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Figure 7.17: Bare truth m4µ distributions from Higgs MC (with mH = 125 GeV
compared the the bare truth PDF. MC with 3 GeV width is top, MC with 6 GeV
width is bottom.
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Figure 7.18: Radiative tail histogram for the 4µ-channel which includes the recon-
struction level FSR correction detailed in Section 6.4.5. The histogram is obtained
using 125 GeV Higgs MC that has passed all analysis selection.

involving electrons is given by:

Tail =

√√√√(#muons∑
i

ptrue,barei +

#electrons∑
j

ptrue,bornj

)2

−mtrue,born
4l +m

reco,w/fsr
4l −mreco

4l

(7.19)

This reduces to Tail = m
reco,w/fsr
4l −mreco

4l in the 4e-channel and Tail = mtrue,bare
4l −

mtrue,born
4l +m

reco,w/fsr
4l −mreco

4l in the 4µ channel.

7.3.3 Detector Response

Having developed an expression for the truth distribution, it is now possible to

integrate the detector response together with the truth distribution. As discussed

in Section 7.2.1, the mass response function is a parameterization of the following

distribution:

xm4l
=
mreco

4l −mtrue,bare
4l

mtrue,bare
4l

(7.20)
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Furthermore, Equation 7.9 shows how the mass response can be written in terms of

individual lepton response functions. Equation 7.20 can be rearranged to give:

mreco
4l = mtrue,bare

4l +mtrue,bare
4l xm4l

(7.21)

This indicates that the PDF of the reconstruction level invariant mass at recon-

struction level is the convolution of the mass response function with the invariant mass

distribution at truth level as discussed in the previous two sections. This convolutions

means that the full signal PDF can be written as the following convolution:

PDFsignal = Response⊗ [Tail⊗ (Acceptance · Breit-Wigner)] (7.22)

7.3.4 Numerical Convolutions

Practically this convolution (Equation 7.22) would be very slow if done numerically.

To speed it up, the commutative property of convolution is used to rearrange the

convolutions:

PDFsignal = Tail⊗ [Response⊗ (Acceptance · Breit-Wigner)] (7.23)

With this ordering, the convolution can be sped up by taking advantage of the fact

that both the gaussian and the Breit-Wigner distributions fall off far from the peak.

Normally the Gaussian with Breit-Wigner convolution is given by:∫ ∞
−∞

Gaus (τ, µ, σ) Acc (x− τ) BW (x− τ,mH ,Γ) dτ (7.24)

Since 99.99% of the Gaussian distribution is located between the −4σ to +4σ mark,

this range is used for the integration in most regions. The integral is evaluated

numerically and thus the infinitesimal dτ goes to ∆τ . This ∆τ step size is chosen
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to be whichever of the following values is smaller: 1) the width of the Breit-Wigner

divided by two Γ/2 or 2) the width of the Gaussian divided by two σ/2. Using

these values to perform the numerical convolution transforms Equation 7.24 into

Equation 7.25

8σ/∆τ∑
i=0

Gaus (τi, µ, σ) Acc (x− τi) BW (x− τi,mH ,Γ) ∆τ (7.25)

Where ∆τ = Min (Γ/2, σ/2) and τi = µ − 4σ + i∆τ . There is one region, however,

where this is not practical. This is when Γ is much much smaller than σ. In this case,

the integration is done around the Breit-Wigner instead of around the Gaussian. For

this region, the numerical integration is given by the following:

8Γ/∆τ∑
i=0

Gaus (x− τi, µ, σ) Acc (τi) BW (τi,mH ,Γ) ∆τ (7.26)

Where ∆τ = Γ/2 and τi = mH − 4Γ + i∆τ . After performing the Gaussian Breit-

Wigner numerical convolution, it is now necessary to do the FSR tail convolution.

This is done numerically using a pre-calculated histogram that defines the tail

with fairly coarse binning (Seen previously in Figure 7.18). Such binning is justified

because the typical width of the Breit-Wigner convolved with the response Gaussian

is quite wide. The equation which describes the next numerical integration is seen in

Equation 7.27. ∑
i

Tail (τi) [Gaus⊗ (Acc · BW)] (x− τi) ∆τi (7.27)

Where τi is the center of the ith bin in the FSR tail histogram and ∆τi is the width

of the ith bin. This is sufficiently fast to allow fitting on high statistics MC samples.

Using this numerical convolution together with the the 16-Gaussian sum, it is now
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Figure 7.19: Signal PDF for an event in 125 GeV Higgs MC with nominal width.

possible to construct a full signal model. Figure 7.19 shows such a signal PDF for a

single event from 125 Higgs MC.

To fully validate the signal model using MC, the full model is made for each event

(as in Figure 7.19) and then summed up for every event in MC. This summation is

then compared to the reconstructed level m4l from various Higgs MC samples with

different widths.

Figures 7.20, 7.21, and 7.22 show that there is good agreement between recon-

structed m4l and the model. This agreement indicates that the model is working

properly for the signal and can be used in a combined fit.
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Figure 7.20: Model vs. reco m4l for Higgs MC with 125 GeV mass and nominal (4.1
MeV) width. Top left is for 4µ, top right is for 4e, bottom left is for 2µ2e, and bottom
right is for 2e2µ.

143



Chapter 7: Mass and Width Measurement

 (GeV)µ4m

110 115 120 125 130 135

E
ve

nt
s 

/ (
1 

G
eV

)

0

200

400

600

800

1000

1200

1400

Model

MC12

 = 3 GeVHΓ

 (GeV)4em

110 115 120 125 130 135

E
ve

nt
s 

/ (
1 

G
eV

)

0

200

400

600

800

1000
Model

MC12

 = 3 GeVHΓ

 (GeV)2eµ2m

110 115 120 125 130 135

E
ve

nt
s 

/ (
1 

G
eV

)

0

200

400

600

800

1000

1200

Model

MC12

 = 3 GeVHΓ

 (GeV)µ2e2m

110 115 120 125 130 135

E
ve

nt
s 

/ (
1 

G
eV

)

0

200

400

600

800

1000

1200

Model

MC12

 = 3 GeVHΓ

Figure 7.21: Model vs. reco m4l for Higgs MC with 125 GeV mass and 3 GeV width.
Top left is for 4µ, top right is for 4e, bottom left is for 2µ2e, and bottom right is for
2e2µ.
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Figure 7.22: Model vs. reco m4l for Higgs MC with 125 GeV mass and 6 GeV width.
Top left is for 4µ, top right is for 4e, bottom left is for 2µ2e, and bottom right is for
2e2µ.
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7.3.5 Signal Mass Model Validations

One strength of the event-by-event approach to fitting the mass and width of the

Higgs boson is that this same approach can be used (with the same response functions)

on additional physics processes. This makes it possible to understand whether the

response functions derived using muons from one resonance can be applied to others.

Furthermore, additional resonances with higher statistics in data than the H →

ZZ(∗) → 4l can be used to ensure the validity of the general method. Two physics

processes that can be used are the Z → µµ and the Z → 4µ. The Feynman diagrams

for these processes are shown in Figure 7.23 and Figure 7.24 respectively. The Z → µµ

is particularly useful because there are a large number of candidate events that can

be used to ensure the signal model will reproduce the shape in both data and MC

simulated events. The Z → 4µ has the same final state as the Higgs signal which

makes it an excellent resonance for checking the machinery of the signal model.

As with the H → ZZ(∗) → 4` model, the FSR tail is calculated from MC while

a Breit-Wigner with width set to the known width of the Z resonance is used as

the born truth shape. Acceptance ratios are calculated from MC. For the Z → µµ

resonance, no fit for the Z mass or width is performed. Instead, a simple comparison

is done between the signal model and the reconstruction level m2µ using the known

Z

µ−

µ+

Figure 7.23: A Feynman diagram showing the lowest order decay of a Z-boson to two
muons.
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Z

µ−

µ+

µ−

µ+

Z(∗)/γ

Figure 7.24: A Feynman diagram showing the lowest order decay of a Z-boson to
four muons.

values of the mass and width of the Z-boson as the parameters for the signal model.

Figure 7.25 shows the comparison between the signal model and the m2µ in data and

MC for the Z → µµ resonance. The data used for these plots is a subset of data from

the 2012 data-taking. The data and MC are selected by requiring a single same-flavor,

opposite-sign dilepton pair. The muons themselves are required to pass the muons

preselection requirements of the Higgs analysis described in Section 6.4.1.
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Figure 7.25: Signal model compared with 8 TeV Z → µµ MC (above) and data
(below).
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In the case of Z → 4µ, relaxed selections from the Higgs analysis are used. The

muon preselection pT-cut is reduced to 4 GeV for CB, ST, and SA muons. Fur-

thermore, the lepton-pT cuts are reduced to pT,1 > 20 GeV, pT,2 > 15 GeV, and

pT,3 > 10 GeV for electrons or pT,3 > 8 GeV for muons. The invariant mass cuts on

both dilepton pairs are relaxed: m12 > 20 GeV and m34 > 5 GeV. To ensure that

the signal model for the Z → 4µ is working properly a comparison is made between

the model and the MC where the mass and width of the Breit-Wigner are set to their

known values of 91.1876 GeV and 2.4952 GeV respectively [9]. The fit to data is

shown in Figure 7.26. The fitted mZ using 8 TeV data is found to be 90.9± 0.3 GeV

and the width is found to be 3.07±0.65 GeV. The uncertainties are purely statistical

and the model used includes no background contributions. A full and more complete

analysis of the Z → 4` resonance is detailed in [49].
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Figure 7.26: Signal model compared with 8 TeV Z → 4µ MC (above) and the signal
model fit to ATLAS data (below) with the fitted mass and width displayed.
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7.4 Signal BDT Model

Although the shape of the signal has been modeled in the invariant mass dimen-

sion, it is also necessary to parameterize the shape of the signal for different values of

the BDT discussed more fully in Section 6.4.7. Like the m4l shape, the BDT shape

will depend on the Higgs parameters. The dependence on the Higgs mass, mH , is

seen in Figure 7.4. The dependence on the Higgs width can be neglected so the

BDT observable is only parameterized with respect to the mH . To produce a smooth

PDF which can be evaluated at any value of the parameter, mH , the kernel based

smoothing discussed in Section 7.7 is used.
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Figure 7.27: Comparison of BDT shapes for signal samples of different mH using 8
TeV MC.

7.5 Background Models

The irreducible background to the Higgs signal in the H → ZZ(∗) → 4` analysis is

the Standard Model ZZ∗ production. The primary production modes are qq̄ → ZZ

and gg → ZZ. MC simulated events are used to determine the shape of the ZZ

background. A Kernel Density Estimate (KDE) smoothing is performed to ensure a

continuous PDF in the m4l and BDT dimensions. The KDE smoothing is discussed

in Section 7.7.

7.6 Reducible Background Model

The reducible backgrounds for the Higgs analysis are generally produced by the

Z+jets, tt̄, and WZ physical processes. The data driven techniques used to estimate

the reducible backgrounds are discussed in Section 6.4.4. The shape of the background
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is smoothed in two dimensions, m4l and BDT, using the kernel density estimate

technique that is discussed in Section 7.7. The 2D shape of the backgrounds in BDT

and m4l after smoothing are compared to data and shown in Figure 6.5.

7.7 Smoothing with Kernel Estimation Techniques

Although the signal model in invariant mass is calculated using event-by-event

information, reconstruction level MC simulated data and data-driven techniques are

used to understand the shape of the backgrounds in the invariant mass dimension

and the shape of both signal and background in the BDT dimension. Smoothing

techniques are used to transform these shapes into continuous smoothed PDFs. A

particularly powerful method uses kernel estimation techniques which attempt to

find an underlying parent distribution which is relatively smooth and statistically

consistent with the data sample used to generate this parent distribution. Practically

this is done by summing Gaussian kernels. In one dimension, the parent distribution

is given by:

f0(x) =
1

nh

n∑
i=1

K

(
x− ti
h

)
(7.28)

where n is the number of data points, ti represents the position of the ith data point

and h is the smoothing parameter. K is a Gaussian kernel with a mean of 0 and a

width of 1.

K(x) =
1√
2π
e−x

2/2 (7.29)

The h can be varied based on the statistics of the sample. Additionally this procedure

can be extended to 2-dimensions. In practice, this procedure is performed using the
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Root library known as RooKeysPdf [50].

7.8 Systematic Uncertainties on the Mass Mea-

surement

The systematic uncertainties on both signal and background models are treated

as nuisance parameters. Nuisance parameters are those which are not of primary

interest but which must be included in a fit to account for some uncertainty about

the shape of the PDF. A classic example of a nuisance parameter is when fitting

Gaussian-distributed data to find the mean of the distribution. In this case, the

width, σ, of the data is unimportant but it must be fitted along with the mean when

using a Gaussian PDF to fit.

A nuisance parameter, α, is used for each source of systematic uncertainty. For

each systematic, three signal and background PDFs are computed: the nominal

model, the model with the systematic varied up by one sigma, and the model with the

systematic varied down by one sigma. A linear morphing between these three models

is then performed. The nuisance parameter is used to vary the degree of morphing

(when the parameter, α, is set to zero, the nominal model is used while α = ±1 refer

to the ±1σ models). Due to the linear morphing, the nuisance parameter can take

on any value including those outside of the ±1σ models used to construct the mor-

phing. However, to ensure that the nuisance parameter will not move substantially

away from the central value, a Gaussian penalty function is added to the likelihood

to constrain the nuisance parameter.
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The sources of systematic uncertainty detailed in the following section can be

split into two types: efficiency and shape. Those associated with efficiency are the

identification, reconstruction, and trigger efficiency of various particles used in the

analysis. These systematics will affect the normalization of various components of

the signal and background. Additionally there are systematics which affect the shape

of the signal and background models. These systematics are related to the scale and

resolution of the energy and momentum of the particles.

At the analysis level, the systematics are evaluated by comparing the event yield

with the nominal values of the systematics to the event yield with the systematic

varied +1σ and −1σ. The percent change is then evaluated by considering the value

of |(N − N ′)/N | where N is the nominal event yield and N ′ is the event yield after

the systematic variation.

Leptons are treated as correlated so if a systematic uncertainty is applied to one

of the leptons, it is applied to all. The weights corresponding to efficiency are varied

up and down in unison; if the weight of an event is given by w1 ·w2 ·w3 ·w4, then the

overall weight with the weights of each lepton varied up is given by (w1 + δw1) · (w2 +

δw2) · (w3 + δw3) · (w4 + δw4). This change in weights will be reflected in the overall

event yield. To understand the systematic uncertainty on the energy and momentum

scale (for electrons and muons respectively), the value of the energy/momentum is

shifted by the scale systematic variation before event selections and then the effect

of this is seen on event yields. Using the change in event yields, it is possible to

understand which systematics are relevant to the measurement.
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7.8.1 Electron Reconstruction and Identification

The uncertainties on the electron reconstruction and identification efficiency are

separated into those which are uncorrelated and correlated [51]. The uncorrelated

uncertainties are those related to the statistical uncertainty which is unrelated for

the different ET bins. These bins are 7 < ET < 10 GeV, 10 < ET < 15 GeV,

15 < ET < 20 GeV, and ET > 20 GeV; the three nuisance parameters corre-

sponding to the statistical part of the uncertainty for the first three bins are called

EL 2012 ST 7, EL 2012 ST 10, and EL 2012 ST 15. The final bin is ET > 20 GeV

and has a single nuisance parameter, EL 2012 IDST high, that incorporates the cor-

related part of the identification efficiency uncertainty and the uncorrelated part

of the identification and reconstruction efficiency uncertainty (i.e. the statistical

component). The correlated part of the identification efficiency uncertainty for the

ET < 20 GeV bins is encapsulated by a single nuisance parameter, EL 2012 ID low.

The reconstruction efficiency is split into two nuisance parameters for ET < 15 GeV

and ET > 15 GeV. These are EL 2012 REC Low and EL 2012 REC high respec-

tively.

An additional uncertainty is based on the data-MC comparison in tag-and-probe

studies (detailed in [52]). This uncertainty, called H4l EL EFF ISOIP, relates to the

uncertainty on the isolation and impact parameter (IP) significance cut efficiency

and is applied to electrons with an ET < 15 GeV. The impact of this uncertainty

on the measurement varies from 0.7% to 2.5 % based on the region and ET. The

percentage effect of each systematic uncertainty on the signal yield (|N − N ′|/N) is

seen in Table 7.1.
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Table 7.1: Systematic uncertainty on the signal yield, |(N −N ′)/N |, for signal Higgs
MC with mH = 125 GeV for the four final states. The meaning of the names of the
nuisance parameters is discussed in the Section 7.8.1 for the electrons, Section 7.8.2
for the muons, and Section 7.8.3 for the trigger..

Nuisance parameter 4e 2e2µ 2µ2e 4µ

Electron reconstruction, identification and cut efficiencies
EL 2012 ST 7 0.67% 0.02% 0.63% -
EL 2012 ST 10 0.91% 0.08% 0.85% -
EL 2012 ST 15 0.78% 0.14% 0.65% -
EL 2012 ID low 1.54% 0.23% 1.34% -
EL 2012 IDST high 2.64% 1.61% 1.04% -
EL 2012 REC low 2.63% 0.20% 2.45% -
EL 2012 REC high 0.94% 0.28% 0.65% -
H4l EL EFF ISOPID 1.18% 0.07% 1.10% -

Muon reconstruction and identification efficiencies
MU EFF - 1.09% 0.77% 1.86%

Trigger efficiencies
EL TRIG 0.21% 0.21% 0.05% -
MU TRIG - 0.03% 0.58% 0.65%

7.8.2 Muon Reconstruction and Identification

The muon reconstruction and identification efficiency systematic uncertainty is

parameterized by a single nuisance parameter (MU EFF) [6]. The percent effect on

the signal yield is seen in Table 7.1.

7.8.3 Trigger

Because the final state of the Higgs decay includes four leptons two of which tend

to be at high-pT/ET, the trigger efficiency is very high. This is because the probability

an event will not be reconstructed is only (1−ε1)·(1−ε2)·(1−ε3)·(1−ε4). The trigger

efficiency is estimated at around 97% for the 4µ, 2e2µ, and 2µ2e channels. While

for the 4e channel, the efficiency is close to 100%. The trigger efficiency uncertainty
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is determined by calculating the number of events that pass all the selection criteria

with and without the trigger requirement. The nuisance parameter related to the

electron trigger efficiency uncertainty is called EL TRIG while the nuisance parameter

corresponding to the muon trigger efficiency uncertainty is called MU TRIG.

7.8.4 Lepton Energy Scale and Resolution

Rather than use the percent effect on the signal yield to gauge the effect of the

energy scale and resolution systematics, the difference in reconstructed four-lepton in-

variant mass, m4l, is calculated between the nominal value and the +1σ (Up) and −1σ

(Down) variations of the given systematic uncertainty. The change in the mean value

of the reconstructed m4l of the events, 〈mvaried
4l 〉 − 〈mnominal

4l 〉, is used to characterize

the effect of the systematic on the ensemble of events.

7.8.5 Electron Energy Scale and Resolution

There are a large number of systematics which vary the scale of the electron and

photon energy. A total of 24 separate nuisance parameters are used to vary both the

electron and photon energy scale. An additional 5 nuisance parameters are dedicated

to the photon energy scale in particular. These are needed due to the usage of FSR

photons by the analysis. Lastly, a single nuisance parameter is used which varies the

electron momentum scale and relates to the uncertainty on the ID track measurement.

The majority of these systematics correspond to different regions and components of

the electron reconstruction algorithms. The combined effect of these 24 systematics

(labeled ZeeAll) on the average invariant mass of signal MC (〈mvaried
4l 〉 − 〈mnominal

4l 〉)
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Table 7.2: Difference of the mean reconstructed mass, 〈mvaried
4l 〉−〈mnominal

4l 〉 , in MeV
for nuisance parameters of electron energy scale and resolution and muon momentum
scale and resolution using signal MC with a Higgs mass of 125 GeV (8 TeV). Up
(Down) means a +1σ (−1σ) variation.

Nuisance parameter 4e 2e2µ 2µ2e 4µ
Up Down Up Down Up Down Up Down

Electron & photon energy scale
ZeeAll 52 −53 34 −34 21 −18 - -

Electron momentum scale
Momentum 16 −16 3 −4 12 −11 - -

Muon momentum scale
SCALE - - 21 −25 32 −32 54 −55

Muon momentum resolution
ID - - −1 1 −2 2 0 0
MS - - 1 −1 −2 2 4 −4

is seen in Table 7.2. The effect of the photon energy scale is completely negligible

and is ignored by the measurement.

7.8.6 Muon Momentum Scale and Resolution

As discussed in Chapter 5, muons are reconstructed by combining tracks in the

ID and in the MS. There is a single scale correction for muons but the resolution

corrections are separated into the ID and MS portions of the muon resolution. This

gives a total of three nuisance parameters: one for the muon scale and two for the

muon resolution. The effect of varying these nuisance parameters on the reconstructed

m4l is detailed in Table 7.2.
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Table 7.3: Systematic uncertainty (normalization) for PDF+αS and QCD scale un-
certainties on the signal yield for each production mechanism at 125 GeV for 7 and
8 TeV.

Production mechanism
2011 (7 TeV) 2012 (8 TeV)

PDF+αS QCD scale PDF+αS QCD scale
Up Down Up Down Up Down Up Down

ggH 7.5% 6.9% 7.2% 7.8% 7.5% 6.9% 7.2% 7.8%
VBF 2.6% 2.8% 0.2% 0.2% 2.6% 2.8% 0.2% 0.2%
WH 2.3% 2.3% 1.0% 1.0% 2.3% 2.3% 1.0% 1.0%
ZH 2.5% 2.5% 3.1% 3.1% 2.5% 2.5% 3.1% 3.1%
ttH 8.1% 8.1% 3.8% 9.3% 8.1% 8.1% 3.8% 9.3%

7.8.7 Luminosity

The luminosity represents a normalization uncertainty for the measurement. This

overall uncertainty is 1.8% for 7 TeV data and 2.8% for 8 TeV data.

7.8.8 Theory Uncertainties

The theoretical uncertainties in the branching ratio to Higgs decay and the PDF+αs

and QCD scale uncertainties are discussed in [1,2,46] and these theoretical calculations

are used for the Higgs analyses by both ATLAS and CMS. The parton distribution

function, PDF, details the momentum fraction carried by each parton in the proton.

Additionally, the αs parameter relates to the strong force coupling. The theoretical

uncertainty on these parameters will affect the production rate and branching frac-

tions at the LHC. For a Higgs with a mass of 125 GeV, these percent uncertainties

are shown in Table 7.3.

As with the signal, PDF+αs and QCD scale uncertainties affect the m4l shape for

the qq → ZZ and gg → ZZ processes. The overall normalization uncertainties are
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Table 7.4: Systematic uncertainty (normalisation) for PDF+αS and QCD scale for
qq → ZZ and gg → ZZ backgrounds.

Background process
2011 (7 TeV) 2012 (8 TeV)

PDF+αS QCD scale PDF+αS QCD scale
Up Down Up Down Up Down Up Down

qq′ → ZZ 4 % 4 % 5 % 5 % 4 % 4 % 5 % 5 %
gg → ZZ 8 % 8 % 37 % 25 % 10 % 10 % 31 % 22 %

shown in Table 7.4.

7.8.9 Ranking of Systematics

The 2D template approach which uses kernel smoothed templates derived from

MC for signal and background [7] is used to understand the importance of the var-

ious systematic uncertainties. The systematics with the biggest effect on the mass

measurement and the signal strength measurement are listed in Table 7.5 for the

mass measurement and in Table 7.6 for the µ measurement. The change on the fitted

parameter by varying the given nuisance parameter up (+1σ) or down (−1σ) relative

to the nominal value of the fitted parameter is shown.

Table 7.5: Nuisance parameters for 2012 signal and background models and their
effect on the 2D template mass measurement (mH).

Description Nuisance parameter +δmH (MeV) −δmH (MeV)

Muon momentum scale:
SCALE MU MS 39 40

Electron & photon energy scale:
ZeeAll EM ES Z 19 19
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Table 7.6: Nuisance parameters for 2012 signal and background models and their
effect on the 2D template signal strength (µ) measurement.

Description Nuisance parameter +δµ −δµ
Luminosity 2012 LUMI 2012 0.027 0.029

Branching ratio H → ZZ BR VV 0.040 0.042

PDF+αS :
gg → H pdf Higgs ggH 0.060 0.062
qq → ZZ pdf qq 0.010 0.010

QCD scale:
gg → H QCDscale ggH 0.058 0.071
qq → ZZ QCDscale VV 0.008 0.008

Electron reco+ID efficiencies:
reco+ID stat, ID syst, ET > 20 GeV EL 2012 IDST high 0.013 0.011
reco, 7 < ET < 15 GeV EL 2012 REC low 0.013 0.010

ID, 7 < ET < 20 GeV EL 2012 ID low 0.008 0.008

Electron cut efficiency H4l EL EFF ISOIP 2012 0.006 0.006
Muon reco & ID efficiencies MU EFF 0.014 0.013

7.9 Fit to m4l and ZZ Discriminant Using Per-

Event Response

At reconstruction level, the four-lepton invariant mass distribution is the convo-

lution of the truth distribution, which here will be referred to as g(m4l,true), with the

mass response function R(m4l,reco,m4l,true). This mass response is derived from the

individual lepton response functions (Section 7.2). The invariant mass distribution is

given by the sum of the Higgs distribution, gH(m4l,true,mH ,ΓH) and the background

distributions, gbkg(m4l,true) with the corresponding signal and background normaliza-

tions. The mass and width parameters can then be obtained by a fit of R⊗ g to the

measured four-lepton invariant mass spectrum after analysis selections.
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7.9.1 Building the Probability Density Function

As discussed in the introduction, the goal of this measurement is to build a PDF

which depends on the Higgs parameters, mH , ΓH , and signal strength, that describes

the shape of the the observable quantities, such as the kinematics of the leptons and

the m4l. Additionally, constrained nuisance parameters which describe the normaliza-

tion of the backgrounds and the variations on the lepton energy, scale, and efficiencies

should be determined in the same maximization. When estimating the mass, the sig-

nal strength is allowed to vary but the width is fixed. Similarly, when the signal

strength is estimated, the mass is allowed to vary but the width is fixed. When the

width is estimated, the mass is fixed to a specific value and the signal strength is

allowed to vary. The combined PDF will be in the form seen in Equation 7.30.

Combined PDF = Nsig(Signal PDF) +

# bkgs∑
i=1

Nbkg,i(Background PDFi) (7.30)

Where Nsig represents the number of signal events and Nbkg,i is the number of back-

ground events for each background type. Generally, the form of the PDFs, for either

signal or background, can be written as seen in Equation 7.31:

PDF = P (m4l|~p1, ~p2, ~p3, ~p4;mH ,ΓH) · P (~p1, ~p2, ~p3, ~p4|mH ,ΓH) (7.31)

The 3×4 components of the momenta vectors would result in a 12-dimensional PDF.

This can be simplified using a variable which encapsulates the useful kinematic infor-

mation given by the four lepton momentum vectors. As discussed earlier, the variable

used for this is the BDT (see Section 6.4.7). The BDT, encapsulates the difference

between the kinematics of signal and background into one number. To ensure that

there is a one-to-one relationship between the BDT and the lepton kinematics, the
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kinematics of the lepton are compared between signal and background for different

slices of BDT. The kinematics show good agreement between signal and background

(as seen in Figure 7.28) although there are some discrepancies in the shape. The

approximation, however, that the kinematics can be encapsulated by the BDT is val-

idated, however, by the fits run on the MC samples discussed in Section 6.3. These

fits show that the estimated parameters have no appreciable bias. Using the BDT as

an approximation for the lepton kinematics, the background PDFs can be simplified

greatly because the background shapes have no dependence on the Higgs parameters:

Background PDF = P (m4l|BDT ) · P (BDT ) (7.32)

Using the approximation that P (m4l|~p1, ~p2, ~p3, ~p4) ≈ P (m4l|BDT ), the signal PDF

can be written as:

Signal PDF = P (m4l|~p1, ~p2, ~p3, ~p4;mH ,ΓH) · P (BDT |mH ,ΓH) (7.33)

Because the mass response can be determined from the individual muon responses

which are themselves specified by the lepton kinematics, the signal PDF is given by:

P (m4l|m4l response;mH ,ΓH) · P (m4l response|µi response) ·
4∏
i=1

P (µi response|~pi)

(7.34)

This reduces to the term found in Equation 7.33:

P (m4l|mH ,ΓH , ~p1, ~p2, ~p3, ~p4) (7.35)

and the specific derivation of this term is found in Section 7.3. The background PDFs

are discussed in Section 7.6 and Section 7.5.
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Figure 7.28: Comparison of the lepton kinematics for the Higgs signal (mH = 125
GeV) shown in red and ZZ(∗) background shown in blue. The first two rows show
the lepton pT while the second two rows show the lepton η. The events are split into
10 evenly spaced bins of BDT. For each event, all four leptons fill the corresponding
histograms once.
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7.9.2 The Combined Likelihood

Using the combined PDF (in Equation 7.30) allows a likelihood maximization to

estimate the fit parameters of interest. These are the signal strength, µ; Higgs mass,

mH ; and Higgs width, ΓH . To estimate the value of these parameters, a negative log-

likelihood scan is used. The equation which describes the full negative log-likelihood

is seen in Equation 7.36.

−
# events∏
i=1

ln [L (mH ,ΓH , µH |m4l,i, BDTi)] (7.36)

This log-likelihood scan makes use of the fact that the likelihood is equal to the PDF

(i.e. L(y|x) = P (x|y)). Additionally, the negative log-likelihood scans shown in the

results section represent the −2∆(lnL) = −2(lnL − lnLmax), where Lmax is the the

most likely value of the likelihood in a given range. The systematics are evaluated,

as discussed in Section 7.8, by varying nuisance parameters which change the shape

or normalization of the signal and background models. The additional variation

through the use of nuisance parameters will translate into added uncertainties in

the fit parameters of interest and accordingly the stated uncertainties include both

statistical and systematic uncertainties. To disentangle the systematic uncertainties

from the statistical uncertainty, it is necessary to perform the likelihood minimization

without the nuisance parameters. This ensures that the only uncertainty is statistical.

Subtracting (in quadrature) the uncertainty of the fit without nuisance parameters

enabled from the uncertainty of the fit with nuisance parameters enabled gives the

total systematic error on the measurement. A quantitative description of the effect

of specific systematics on the measurement is discussed in Section 7.8.9.

From the negative log-likelihood scan, it is possible to determine the upper and
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lower uncertainties on the most likely value of the parameter. The one sigma and neg-

ative one sigma bounds can be read off at the point where −2 logL = 1. In addition,

one can determine the 95% confidence intervals on the value of the parameter.

Scans are run on simulated MC events which are scaled to the expected luminosity

for the 2011 and 2012 run periods in order to determine what the expected results

should be and to give a point of comparison to the actual scans which are performed

on 25 fb−1 of ATLAS data with a center-of-mass energy of 7 TeV for 2011 and 8 TeV

for 2012. To produce the expected results, a signal MC sample is used with a Higgs

mass of 125 GeV and the nominal Higgs width for this mass which is 4.1 MeV.

7.10 Results

With these signal and background models it is possible to fit the Higgs data di-

rectly using an unbinned maximum likelihood fit. In this procedure the background

normalizations are set to their estimated values. Shape and normalization systematics

are treated as nuisance parameters in the fit. The following tables and plots sum-

marize the minima of the likelihood scans for the signal strength, µ; the mass, mH ;

and the width, ΓH . These are shown for each channel separately and for all channels

combined. Furthermore, the results are split into the expected and observed results.

The observed results are produced using the full ATLAS dataset while the expected

results are run on MC samples discussed in Section 6.3 and scaled to the expected

luminosity for 2011 or 2012 as needed. All stated uncertainties include statistical and

systematic components.

To better understand the results in data, tables are presented which show the
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relevant information for candidate events in the 110-140 GeV mass range. The mass

and BDT for each event is shown, and the RMS of the multi-Gaussian per-event mass

response is quoted as an encapsulation of the information contained in the per-event

mass response. Tables 7.7, 7.8, 7.9, and 7.10 show the candidates for the 4µ, 2e2µ,

2µ2e, and 4e channels respectively. Unlike the event yields presented in Table 6.5, the

reconstruction level invariant mass from these these tables does not have the Z-mass

constraint applied.

Table 7.7: Candidate 4µ events in 2011 and 2012 data from the 110-140 GeV mass
range. The first column is the reconstructed four lepton invariant mass for the event,
the second column is the RMS of the per-event mass response for that event, the
third column is the value of the BDT for the event, and the last column represents
the year the event was measured in.

Mass (GeV) Response RMS (GeV) BDT Year

113.4 1.66 0.86 2012
113.9 2.26 -0.81 2011
115.7 1.82 0.04 2011
118.8 1.94 0.63 2012
120.9 2.16 -0.81 2012
122.0 1.99 -0.54 2011
122.8 3.10 -0.85 2012
123.2 3.19 -0.01 2012
123.3 1.57 0.76 2012
123.6 1.99 -0.88 2012
123.8 2.22 0.37 2012
124.1 1.50 -0.13 2012
124.4 1.94 0.62 2012
124.6 1.80 0.60 2011
124.6 2.32 -0.55 2012
126.9 2.34 -0.31 2012
129.2 2.02 -0.12 2012
129.6 2.21 -0.38 2012
132.3 1.92 -0.59 2012
133.1 2.88 -0.06 2012
135.4 2.43 0.12 2012
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Table 7.8: Candidate 2e2µ events in 2011 and 2012 data from the 110-140 GeV mass
range. The first column is the reconstructed four lepton invariant mass for the event,
the second column is the RMS of the per-event mass response for that event, the
third column is the value of the BDT for the event, and the last column represents
the year the event was measured in.

Mass (GeV) Response RMS (GeV) BDT Year

112.7 3.77 -0.06 2012
117.3 3.93 -0.06 2012
118.3 3.92 0.13 2012
123.8 2.63 0.58 2012
123.8 3.43 0.65 2012
124.0 3.81 0.38 2012
124.2 2.89 0.86 2011
124.9 4.60 -0.32 2012
125.5 4.60 0.85 2012
127.0 3.05 -0.22 2011
127.0 4.69 0.77 2012
129.9 5.68 0.40 2012
131.0 5.18 -0.95 2011
131.2 3.44 0.15 2012
134.4 2.84 0.66 2012

Table 7.9: Candidate 2µ2e events in 2011 and 2012 data from the 110-140 GeV mass
range. The first column is the reconstructed four lepton invariant mass for the event,
the second column is the RMS of the per-event mass response for that event, the
third column is the value of the BDT for the event, and the last column represents
the year the event was measured in.

Mass (GeV) Response RMS (GeV) BDT Year

115.5 2.57 0.58 2012
117.4 2.43 0.17 2012
117.7 2.06 -0.32 2012
118.5 2.97 0.47 2012
121.7 2.62 0.40 2012
122.0 2.47 -0.20 2012
124.3 3.44 0.28 2011
135.5 3.95 0.29 2012
136.5 2.76 0.19 2012
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Table 7.10: Candidate 4e events in 2011 and 2012 data from the 110-140 GeV mass
range. The first column is the reconstructed four lepton invariant mass for the event,
the second column is the RMS of the per-event mass response for that event, the
third column is the value of the BDT for the event, and the last column represents
the year the event was measured in.

Mass (GeV) Response RMS (GeV) BDT Year

111.1 5.71 0.32 2012
115.3 4.42 -0.67 2011
121.7 4.79 0.09 2012
122.8 4.02 0.53 2011
124.0 3.89 0.80 2012
125.4 2.39 0.89 2012
125.8 4.51 -0.57 2012
126.0 3.60 -0.46 2012
126.8 3.44 -0.85 2012
126.8 5.47 0.54 2012
129.1 5.60 0.56 2012
135.1 4.13 0.54 2012
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Table 7.11 presents the expected results from 7 TeV MC. These scans are produced

by scaling the ensemble of simulated events to the expected signal and background

normalizations. The estimated mass, width, and signal strength of the Higgs are each

consistent with the input values used to generate the MC samples. This indicates

that there is no intrinsic bias to the fit. The width measurements in the subchannels

are marked with “−” indicating that the likelihood scan is flat within the 0 - 30 GeV

range used to perform the likelihood scan.

Table 7.11: Expected Higgs signal strength, mass and width measurement extracted
using a likelihood scan with event-by-event resolution on Higgs MC (mH = 125 GeV)
at 7 TeV. Results are presented for each analysis channel and their combination. The
uncertainty includes the statistical and systematic components.

Channel Mass (GeV) Signal Strength Width (GeV)

4µ 125.03+3.40
−3.09 0.98+1.69

−0.75 −
2e2µ 124.95+5.02

−4.48 0.99+2.28
−0.90 −

2µ2e 125.03+4.97
−4.53 0.98+3.48

−0.88 −
4e 124.81+5.19

−4.31 0.84+4.26
−0.74 −

Combined 124.98+2.30
−2.09 0.97+1.02

−0.56 0.0+12.7
−0.00

Table 7.12 shows the observed results for the mass, signal strength, and width of

the Higgs using 7 TeV data. The width likelihood scans are less flat than the expected

MC due to a few events near the signal region with high values of the BDT. The same

effect is also seen in the estimated signal strengths which are noticeably larger than

unity.

Table 7.13 presents the expected results from 8 TeV MC. As before, these scans

are produced by scaling the ensemble of simulated events to the expected signal and

background normalizations. As with the 7 TeV results, the estimated mass, width,

and signal strength are each consistent with the input values used to generate the MC
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Table 7.12: Observed Higgs signal strength, mass and width measurement extracted
using a likelihood scan with event-by-event resolution on ATLAS data taken at 7
TeV. Results are presented for each analysis channel and their combination. The
uncertainty includes the statistical and systematic components.

Channel Mass (GeV) Signal Strength Width (GeV)

4µ 124.07+1.95
−1.57 2.00+2.50

−1.44 0.0+6.22
−0.00

2e2µ 125.53+1.95
−1.64 2.56+2.68

−1.58 0.0+3.48
−0.00

2µ2e 123.24+6.75
−7.64 1.71+3.72

−1.62 −
4e 123.26+4.68

−2.86 2.23+3.87
−2.09 0.0+21.00

−0.00

Combined 124.46+1.20
−1.02 1.99+1.28

−0.94 0.0+1.30
−0.00

Table 7.13: Expected Higgs signal strength, mass and width measurement extracted
using a likelihood scan with event-by-event resolution on Higgs MC (mH = 125 GeV)
at 8 TeV. Results are presented for each analysis channel and their combination. The
uncertainty includes the statistical and systematic components.

Channel Mass (GeV) Signal Strength Width (GeV)

4µ 125.00+1.18
−1.15 1.00+0.59

−0.44 0.0+4.05
−0.00

2e2µ 124.99+1.72
−1.61 1.00+0.89

−0.58 0.0+8.82
−0.00

2µ2e 124.97+2.09
−1.93 1.00+0.74

−0.54 0.0+9.30
−0.00

4e 125.06+2.42
−2.36 0.99+0.93

−0.60 0.0+16.10
−0.00

Combined 125.00+0.79
−0.78 1.00+0.36

−0.30 0.0+2.55
0.00

samples. This indicates that there is no intrinsic bias to the fit. Because muons have

more narrow response functions and there is a larger event yield in the 4µ channel,

the 4µ channel dominates the combined uncertainty on the mass, width, and signal

strength.

Table 7.14 shows the observed results for the mass, signal strength, and width of

the Higgs using 8 TeV data. Compared to the expected results, the uncertainty on

the mass is lower. This is primarily due to the excess of events in the peak region

first observed in the event yields in Table 6.5. The same effect is also seen in the

measured signal strength.
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Table 7.14: Observed Higgs signal strength, mass and width measurement extracted
using a likelihood scan with event-by-event resolution on ATLAS data taken at 8
TeV. Results are presented for each analysis channel and their combination. The
uncertainty includes the statistical and systematic components.

Channel Mass (GeV) Signal Strength Width (GeV)

4µ 124.20+0.80
−0.85 1.53+0.75

−0.56 0.0+1.17
−0.00

2e2µ 125.39+1.16
−1.14 1.73+0.95

−0.69 0.0+4.22
−0.00

2µ2e 119.71+1.68
−1.41 3.14+1.83

−1.31 10.20−8.72

4e 126.12+1.17
−1.03 2.10+1.12

−0.84 0.0+4.84
−0.00

Combined 124.57+0.54
−0.52 1.72+0.48

−0.40 0.0+1.93
0.00

Table 7.15: Expected Higgs signal strength, mass and width measurement extracted
using a likelihood scan with event-by-event resolution on Higgs MC (mH = 125 GeV)
at 7 and 8 TeV combined. Results are presented for each analysis channel and their
combination. The uncertainty includes the statistical and systematic components.

Channel Mass (GeV) Signal Strength Width (GeV)

4µ 124.97+1.10
−1.05 1.00+0.55

−0.44 0.0+2.50
−0.00

2e2µ 125.08+1.61
−1.51 0.97+0.87

−0.56 0.0+7.27
−0.00

2µ2e 125.00+1.93
−1.88 0.99+0.85

−0.54 0.0+8.68
−0.00

4e 125.09+2.39
−2.29 0.99+0.70

−0.50 0.0+15.15
−0.00

Combined 125.00+0.76
−0.80 0.99+0.36

−0.26 0.0+2.52
−0.00

Table 7.15 shows the expected results from 7 and 8 TeV MC. As with the individual

7 and 8 TeV expected results, the combined expectation is dominated by the 4µ

channel. Again, there is no bias in the expected results.

Table 7.16 shows the observed results for 7 and 8 TeV ATLAS data. This repre-

sents the full run 1 ATLAS dataset. In data, the mass and the width measurements

have substantially better uncertainties than expected. As seen in Table 7.7, the 4µ

channel that drives the measurement has a number of events between 123 and 125 GeV

with a high BDT and a narrow mass response. In general, the other channels have

better Higgs width limits than expected. Typically this is due to a clustering of signal
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events that have mass response functions that are more narrow than average. The

2µ2e channel has a very poor limit on the Higgs width. In this channel, there are three

events with high values of the BDT located well below 125 GeV as seen in Table 7.9.

To treat these events as signal, the fit widens the signal shape to accommodate.

Table 7.16: Observed Higgs signal strength, mass and width measurement extracted
using a likelihood scan with event-by-event resolution on ATLAS data taken at 7 and
8 TeV. Results are presented for each analysis channel and their combination. The
uncertainty includes the statistical and systematic components.

Channel Mass (GeV) Signal Strength Width (GeV)

4µ 124.21+0.73
−0.79 1.60+0.72

−0.55 0.0+0.94
−0.00

2e2µ 125.39+1.01
−0.93 1.87+0.87

−0.65 0.0+2.00
−0.00

2µ2e 120.62+1.54
−1.72 2.84+1.53

−1.18 6.00+18.2
−6.0

4e 126.01+1.15
−1.02 2.01+1.06

−0.76 0.0+4.18
−0.00

Combined 124.57+0.48
−0.43 1.76+0.46

−0.37 0.0+0.74
−0.00

Figures 7.29, 7.30, 7.31, and 7.32 show the likelihood scans for each of the four

analysis sub-channels (4µ, 2e2µ, 2µ2e, and 4e respectively) using the 7 and 8 TeV

combined MC samples. Figure 7.33 shows the likelihood scan for all channels com-

bined. At the left of each figure is the mass scan, in the middle is the signal strength

scan, and on the right is the width scan. Characteristically, the mass scan is symmet-

ric around the central value while the signal strength scan will rise sharply towards

zero. This is because a negative signal is not permitted by the fit. The width has

a minimum at zero with the negative log likelihood rising with increasing widths. It

should be noted that the width scan tends to level off. This is because the fit window

is between 110 GeV and 140 GeV and the signal model will appear flat in this range

for large values of the Higgs width. This means that the negative log-likelihood scan

will not rise parabolically (as it would in a typical likelihood scan) at large values of
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Figure 7.29: Mass (left), signal strength (middle), and width (right) scans in 125 GeV
Higgs MC for the 4µ channel including systematic uncertainties for the simulated MC
2011 and 2012 data set.
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Figure 7.30: Mass (left), signal strength (middle), and width (right) scans in 125 GeV
Higgs MC for the 2e2µ channel including systematic uncertainties for the simulated
MC 2011 and 2012 data set.

the Higgs width.

The likelihood scans of the width can be used to set exclusions on the width of

the Higgs. The 95% expected Confidence-Level (CL) on the Higgs natural width

using 8 TeV data is ΓH < 6.98 GeV. For the combined 7 and 8 TeV data set, the

expected limit is ΓH < 6.24 GeV. This expected limit decreases to ΓH < 3.5 at

a 95% confidence limit when the SM signal is scaled to the observed excess. The

actual observed limits are ΓH < 4.46 GeV with 95% confidence using 8 TeV data

and ΓH < 2.63 GeV using the 7 TeV and 8 TeV data set. The difference between
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Figure 7.31: Mass (left), signal strength (middle), and width (right) scans in 125 GeV
Higgs MC for the 2µ2e channel including systematic uncertainties for the simulated
MC 2011 and 2012 data set.
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Figure 7.32: Mass (left), signal strength (middle), and width (right) scans in 125 GeV
Higgs MC for the 4e channel including systematic uncertainties for the simulated MC
2011 and 2012 data set.
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Figure 7.33: Mass (left), signal strength (middle), and width (right) scans in 125
GeV Higgs MC for all channels combined including systematic uncertainties for the
simulated MC 2011 and 2012 data sets.
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the observed and expected results is largely due to the higher than expected signal

strength observed in data.
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Conclusions

In 2012, the Higgs boson was discovered. Since then, increased data and improved

analysis techniques have reduced the statistical uncertainty on the mass of this new

resonance. This thesis presents a new measurement of the signal strength, mass,

and width of the Higgs boson using the full ATLAS dataset from run 1. These

measurements were performed using a new technique that uses the detector response

on an event-by-event level. This results in the most precise measurement of the Higgs

mass using the 25 fb−1 of ATLAS data from 2011 and 2012. The measurement of the

Higgs width using this technique provides the strongest exclusion limit on the width

of the Higgs from a direct measurement of the invariant mass with either ATLAS or

CMS data. The results from the event-by-event approach were published, along with

complementary results from a 2D template1 approach, in [7].

Using the event-by-event approach detailed in this thesis, the signal strength for

1The 2D template approach uses MC and data-driven based template models for the signal and
background shapes in both BDT and m4l
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all channels is measured to be 1.76+0.46
−0.37. The corresponding 2D template approach

measures the signal strength to be 1.66+0.45
−0.38. The signal strength measured by the

ATLAS H → γγ analysis is found to be 1.29+0.30
−0.30. These ATLAS measurements are

consistent within 1σ of each other and within 2σ of the SM prediction. Using 2011 and

2012 data, the CMS experiment measures a signal strength of 0.93+0.26
−0.23(stat)+0.13

−0.09(syst)

in the H → ZZ(∗) → 4` decay channel. This result does not show the same excess

present in the ATLAS measurements. The measurements of the Higgs signal strength

are shown in Figure 8.1.

Table 8.1: Higgs signal strength measurements performed using various approaches
with 2011 and 2012 ATLAS and CMS data. Systematics are included in the quoted
uncertainties.

Channel Signal Strength

ATLAS H → 4` (event-by-event) 1.76+0.46
−0.37

ATLAS H → 4` 2D template [7] 1.66+0.45
−0.38

ATLAS H → γγ [7] 1.29+0.30
−0.30

CMS H → 4` [53] 0.93+0.26
−0.23(stat)+0.13

−0.09(syst)

The mass, in the H → ZZ(∗) → 4`, was measured to be 124.57+0.48
−0.43 GeV using

the event-by-event approach. As a point of comparison, the 2D template approach

measures the mass of the Higgs to be mH = 124.51+0.54
−0.51 GeV [7]. The event-by-event

approach exhibits a smaller uncertainty on the mass than the 2D template approach

because there is an excess of events near 125 GeV with well measured leptons.

An additional ATLAS measurement using the H → γγ decay channel estimated

the mass of the Higgs to be 125.98+0.50
−0.50 GeV. The combination of the H → ZZ(∗) and

H → γγ mass and width measurements is shown in Figure 8.1. This figure shows

the likelihood contours of a simultaneous fit to the signal strength and mass and
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the combination, including all systematic uncertainties, of the two measurements.

The Higgs mass from this combination is estimated to be 125.35+0.41
−0.41. The CMS

experiment measures a Higgs mass of 125.6+0.45
−0.45 GeV in the H → 4` final state [53].

This is consistent with the various ATLAS measurements. Table 8.2 summarizes

these results.

Table 8.2: Higgs mass measurements performed using various approaches with
2011 and 2012 ATLAS and CMS data. Systematics are included in the quoted
uncertainties.

Channel Mass Measurement (GeV)

ATLAS H → 4` (event-by-event) 124.57+0.48
−0.43

ATLAS H → 4` 2D template 124.51+0.54
−0.51

ATLAS H → γγ 125.98+0.50
−0.50

ATLAS Combined (4` 2D template + γγ) [7] 125.36+0.41
−0.41

CMS H → 4` [53] 125.6+0.45
−0.45

The natural width of the Higgs boson measured in this thesis is used as the ATLAS

baseline width measurement for the H → ZZ(∗) → 4` analysis. The observed and

expected log-likelihood scans are shown in Figure 8.2. A direct limit on the total width

of the Higgs boson of ΓH < 2.6 GeV at 95% confidence is observed. The expected

limit for the SM Higgs is estimated to be ΓH < 6.2 GeV at 95% confidence. The

measurement is limited by the mass resolution of the detector. Much of the difference

between the observed and expected limits on the Higgs width can be accounted for by

the higher than expected signal yield. When scaled to the observed signal rate, the

expected limit is found to be ΓH < 3.5 GeV at 95% confidence. The 95% observed and

expected exclusion confidence limits from the H → γγ analysis are < 5.0 GeV and

< 6.2 GeV respectively. The CMS experiment has performed a width measurement
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using data from the 2011 and 2012 run periods [53]. The observed and expected

95% confidence limits on the width of the Higgs resonance from this measurement

are < 3.4 GeV and < 2.8 GeV respectively2. All limits using data from p-p collisions

at the LHC are compatible with the expected 4.1 MeV natural width of a 125 GeV

Standard Model Higgs boson.

The direct measurements presented in this thesis of the width and signal strength

of the particle discovered in 2012 [15,16] support the hypothesis that the resonance is

the Standard Model Higgs boson predicted by Peter Higgs, François Englert, Robert

Brout, Gerald Guralnik, C. R. Hagen, and Tom Kibble [12–14].

As discussed in Section 2.3, the mass of the Higgs is an important component

when checking the consistency of the Standard Model of particle physics. The mass

of the top quark, the W -boson, and the Higgs boson are related to each other through

2An additional CMS measurement which determines the width of the Higgs boson using off-shell
production of Z-boson pairs was performed in [54]. Using this procedure, the width of the Higgs is
found to be less than 22 MeV at the 95% confidence level.
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higher order loop corrections. Using a fit to the electroweak observables, a check on

the consistency of the SM can be performed. These consistency checks are described

in [8]. The mass of the Higgs used in the fit is the average of the ATLAS [7] and

CMS [55] measurements. The p-value for the SM to describe the data is calculated

to be 0.21 which corresponds to a 0.8σ one-sides significance [8].

Figure 8.3 presents the results of the electroweak fit and their constraints on the

mass of the W boson and the top quark. The grey contours show the constraints

without including measurements of the Higgs mass. Including the average of the

Higgs mass as measured by ATLAS and CMS in the global electroweak fit greatly

improves the constraint as shown by the blue contours. The constraints are consistent

with the direct measurements of the top and W masses within their uncertainties. If

statistically significant deviations between the fit results and the direct measurements

were to appear, they could be an indication of new physics.

With the 2015 LHC run, the H → ZZ(∗) → 4` analysis will become more pow-

erful because the analysis is heavily dominated by the statistical uncertainty on the

measurement. With increased data, the precision on the mass, width, and signal

strength measurements will increase substantially. Additional measurements, per-

formed on data from the 2015 LHC run, will shed light on the discrepancies between

the H → ZZ(∗) → 4` measured signal strength and the Standard Model prediction.
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